期刊文献+

几个著名网络的限长路径(英文)

On Bounded Paths in Some Networks
下载PDF
导出
摘要 设给出了(h,(?))-η限长路径问题是图论中的Menger定理的变形和推广,在实时容错网络设计和分析中有重要意义.对于给定的正整数d,Ad(D)表示网络D中任何距离至少为2的两顶点之间内点不交且长度都不超过d的路的最大条数;Bd(D)表示D的顶点子集B中的最小顶点数使得D-B的直径大于d.已证明确定Ad(D)的问题是NPC问题,而且显然有不等式Ad(D)《 Bd(D).本文考虑D为超立方体网络、De Bruijn网络和Kautz网络,对d的不同值确定了Ad(D)及Bd(D),而且均有Ad(D)=Bd(D). The problem of paths with bounded length, being a variation and a generalization of Menger's theorem, is of very important significance in the design and analysis of real-time or fault-tolerant interconnection networks. For a given positive integer d, the symbol Ad(D) denotes the maximum number of internally disjoint paths of length at most d between any two vertices with distance at least two in the network D; the symbol Bd(D) denotes the minimum number of vertices whose deletion results in diameter larger than d. Obviously, Ad(D) ≤ Bd(D) and it has been shown to determine the value of Ad(D) is NP-complete. In the present paper, three well-known networks, hypercubes, de Bruijn and Kautz, are considered and the values of Ad(D) and Bd(D) are determined, which show Ad(D) = Bd(D).
出处 《运筹学学报》 CSCD 北大核心 2003年第1期59-64,共6页 Operations Research Transactions
关键词 限长路径 Menger定理 超立方体网络 DE Bruijn网络 Kautz网络 实时容错网络 顶点 paths, Menger's theorem, hypercubes, de Bruijn digraphs, Kautz digraphs.
  • 相关文献

参考文献9

  • 1Bondy, J.A. and Murty, U.S.R.,Graph Theory with Applications. Macmillan Press, London,1976. 被引量:1
  • 2Lovsaz, L., Neumann-Lara, V., and Plummer, M. D., Mengerian theorems for paths ofbounded length Period. Math. Hungar., 9 (1978), 269-276 被引量:1
  • 3Exoo, G., On a measure of communication network vulnerability. Networks. 12 (1982),405-409 被引量:1
  • 4Itai, A., Perl, Y., and Shiloah, Y., The complexity of finding maximum disjointpaths with length constraints. Networks, 12 (1982), 277-286 被引量:1
  • 5Ronen, D., and Perl, Y., Heuristics for finding a maximum number of disjointbounded paths.Networks, 14 (1984), 531-544 被引量:1
  • 6Saad, Y., and Schultz, M. H., Topological properties of hypercubes. IEEE Trans.Comput., 37(7) (1988), S67-872 被引量:1
  • 7Li Qiao, Sotteau,T., and Xu Jun-Ming. 2-diameter of de Bruijn graphs. Networks. 28(1) (1996),7-14 被引量:1
  • 8Imase, M., Soneoka, T., and Okada, K., Fault-tolerant processor interconnectionnetworks.Systems and Computers in Japan, 17 (8) (1986), 21-30 被引量:1
  • 9Du, D. Z., Hsu, D. F., and Lyuu, Y. D., On the diameter vulnerability of Kautzdigraphs.Discrete Math., 151 (1996), 81-85 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部