摘要
树脂锚固材料广泛应用于煤矿巷道支护与结构加固等。但其高温下具有热解特性,会直接影响材料的力学性能。利用显微CT、电镜扫描及高温力学性能实验等手段,对加温(20~600℃)过程中树脂锚固材料内部孔隙结构演化特征及其力学性能进行分析。1 CT分析表明:锚固材料固化后常温下平均灰度5.68;350~500℃平均灰度衰减20.7%,孔隙团数量增幅47.5%,孔隙团大小增幅达201.5%;树脂有机物衰减系数闽值区间为0.016 3~0.037 3,该区间物质的高温热解直接导致孔隙增加。2 SEM扫描显示:在20~200℃锚固材料内部随着树脂固化反应充分而变得致密,350℃以后树脂体分解炭化加剧,锚固材料松散。3高温力学实验表明:200℃时锚固材料强度达到峰值,较常温增幅32%;350℃后强度衰减加剧,600℃时强度较常温衰减98%。
Resin anchor material has been widely used in coal roadway and structural reinforcement.However,its pyrolysis characteristics at high temperature directly affect the mechanical properties of the material.μCT225k VFCB microscopy CT scans,SEM and the experiments of high temperature mechanical properties are used to analyze the evolution of pore structure and mechanical properties of unsaturated polyester resin anchoring material in the heating process( 20-600 ℃).1 CT analysis shows that: the anchoring material's average gray at room temperature is 5.68; when the temperature ranges 350-500 ℃,the average gray shows an attenuation of 20.7%; the number of the pore group increases 47.5% and the size of the pore group increases 201.5%; the threshold range of organics attenuation coefficient is 0.016 3-0.037 3,during which the organic pyrolysis directly leads to an increase of the number of inner pore. 2 SEM experimental observation shows that anchorage materials becomes dense between 20 ℃ to 200 ℃,and the carbonization of organic resin gel decomposition intensifies above 350 ℃,and the anchoring material become loose.3 High temperature mechanical experiments show that the anchoring material strength reaches a peak at 200 ℃,which shows an increase of 32% compared with room temperature; the strength attenuation intensifies above 350 ℃,and at 600 ℃ the intensity attenuation is 98% compared to the room temperature.
出处
《煤炭学报》
EI
CAS
CSCD
北大核心
2015年第10期2408-2413,共6页
Journal of China Coal Society
基金
国家自然科学基金资助项目(51274145)
中国矿业大学深部岩土力学与地下工程国家重点实验室开放基金资助项目(SKLGDUEK1311)
山西省自然科学基金资助项目(2015011066)
关键词
树脂锚固材料
600℃高温
细观结构
高温力学性能
resin anchoring material
600 ℃ high temperature
micro-structure
high temperature mechanical-properties