期刊文献+

基于神经网络的煤HRTEM图像处理技术 被引量:1

HRTEM Image Processing Technology of Coal Based on Neural Network
下载PDF
导出
摘要 在煤的高分辨透射电镜(HRTEM)图像提取芳香层片过程中,通过对图像处理技术的应用,做出关于HRTEM图像像素的训练集和测试集,然后设计相应的卷积神经网络进行运算,探讨出使其拥有最大学习率和最高准确度的权重和偏置,最终得到可以解决煤的HRTEM图像的最佳卷积神经网络模型。 In the process of extracting aromatic slices from high resolution transmission electron microscopy(HRTEM)images of coal,through the application of image processing technology,the training set and test set of HRTEM image pixels are made,and then the corresponding convolution neural network is designed for calculation,and the weights and biases which make it have the highest learning rate and the highest accuracy are discussed.Finally,get the best convolution neural network model which can solve the HRTEM image of coal.
作者 李耀高 LI Yao-gao(College of Mining Engineering,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《煤炭技术》 CAS 2019年第8期167-170,共4页 Coal Technology
关键词 HRTEM图像 深度学习 卷积神经网络 HRTEM image deep learning convolutional neural network
  • 相关文献

参考文献6

二级参考文献78

  • 1曾凡桂,降文萍,谢克昌.洁净煤技术的源头创新——煤分子工程及其关键问题的进展[J].自然科学进展,2005,15(4):397-403. 被引量:6
  • 2Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110. 被引量:1
  • 3Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893. 被引量:1
  • 4Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507. 被引量:1
  • 5Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154. 被引量:1
  • 6Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469. 被引量:1
  • 7Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48. 被引量:1
  • 8Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538. 被引量:1
  • 9LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404. 被引量:1
  • 10LeCun Y, Cortes C. MNIST handwritten digit database[EB/OL], http//yann, lecun, com/exdb/mnist, 2010. 被引量:1

共引文献2511

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部