期刊文献+

基于主成分分析的中煤发热量的检测研究 被引量:5

Detection Research of Calorific Value of Middlings Based on Principal Component Analysis
下载PDF
导出
摘要 为了研究中煤的发热量,采集了100个中煤样品的近红外漫反射光谱,采用主成分分析(PCA)对数据进行降维,建立定量的数学模型并与工业检测对比。分析结果表明,PC1的累计方差贡献率为92.13%,PC2的累计方差贡献率为91.35%;校正集和预测集的相关系数(R2)分别为0.961 54和0.880 64,校正集的均方根误差(RMSEC)和预测集的均方根误差(RMSEP)分别为0.173和0.300。实验结果表明:模型具有较高的相关性、稳定性和预测精度,为中煤发热量的近红外光谱定量检测奠定了基础。 To study the calorific value of middlings, collected the near-infrared diffuse reflection spectrum from 100 middling samples, principal components were extracted by principal component analysis(PCA), which established the mathematical model of quantitative and compared with industrial detection. PC1 accounts for 92.13% of cumulative variance contribution rate and PC2 accounts for91.35%; root mean square error of calibration(RMSEC) and root Mean Square Error of prediction(RMSEP)were 0.173 and 0.300, with correlation coefficients(R2) of 0.961 54 and 0.880 64, respectively. The results indicated that the model has a high relevance, stability and accuracy, which provided an approach for quantitative analysis of Calorific Value of middlings based on near infrared spectrum.
作者 郑忠 宋万利
出处 《煤炭技术》 CAS 北大核心 2014年第6期218-220,共3页 Coal Technology
关键词 近红外光谱 主成分分析 中煤 发热量 near-infrared spectroscopy PCA middlings calorific value
  • 相关文献

参考文献11

二级参考文献74

共引文献99

同被引文献55

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部