期刊文献+

一种基于Lorenz系统的混沌加密算法的设计和分析 被引量:7

Design and Analysis of a Lorenz-based Chaos Encrypt Method
下载PDF
导出
摘要 混沌信号具有天然的随机性,可以作为序列密码应用于信息加密。文章基于混沌理论,从应用的角度出发,设计了一种混沌加密算法,并对该算法的性能进行了分析。 The chaotic signal, which possesses natural randomness, can be used for information encryption as sequence cipher. Based on chaos theory and starting from the angle of application, this paper designs a chaotic encryption algorithm, and makes analysis on the natures of this algorithm.
出处 《科技情报开发与经济》 2003年第5期192-193,共2页 Sci-Tech Information Development & Economy
基金 北京市自然科学基金资助项目(4002004)。
关键词 混沌信号 混沌加密算法 LORENZ系统 设计 序列密码 计算机安全 Lorenz system chaotic signal information encryption sequence cipher
  • 相关文献

参考文献1

二级参考文献23

  • 1[1] National Bureau of Standards. FIPS PUB 46 Data Encryption Standards[S]. Washington DC : Federal Information Processing Standard, US Dept. Of Commerce, 1977. 被引量:1
  • 2[2]Revest R L, Shamir A, and Adleman L M. A method for obtaining digital signature and public-key cryptosystems[J]. Communications of the ACM, 1978,21:120~126. 被引量:1
  • 3[3]Diffie W and Hellman M F. New directions in cryptograghy[J]. IEEE Transactions in Information Theory, 1976,IT-22:644~654. 被引量:1
  • 4[4]ElGamal T. A public key cryptosystem and a signature scheme base on discret logarithm[A]. Advances in Cryptology, Proceedings of CRYPTO'84[C]. Berlin: Springer-Verlag Lecture Notes in Computer Science, 1985,196:10~18. 被引量:1
  • 5[5]Koblitz N. Elliptic curve cryptosystems[J].Mathematics of Computation, 1987,(48):203~209. 被引量:1
  • 6[6]Miller V S. Use of elliptic curves in cryptograghy[A]. Advances in Cryptology, Proceedings of CRYPTO'85[C]. Berlin: Springer-Verlag Lecture Notes in Computer Science, 1986,218:417~426. 被引量:1
  • 7[7]Fujisaka H and Yamada T. Stability theory of synchronized motion in coupled-oscillator systems[J]. Porg Theor Phys, 1983,69:32~47. 被引量:1
  • 8[8]Pecora L M and Carroll T L. Synchronization in chaotic systems[J]. Phys Rev Lett, 1990,64:821~823. 被引量:1
  • 9[9]Rulkov N F, Sushchik M M and Tsimring L S. Generalized synchronization of chaos in directionally coupled chaotic systems[J]. Phys Rev, 1995,E50:980~994. 被引量:1
  • 10[10]Maruli K and Lakshmanan M. Drive response scenario of chaos synchronization in identical nonlinear system[J]. Phys Rev, 1994,E49:4882~4885. 被引量:1

共引文献8

同被引文献38

引证文献7

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部