期刊文献+

向量空间模型中完全加权关联规则的挖掘 被引量:21

Mining All-weighted Association Rules from Vector Space Model
下载PDF
导出
摘要 项目加权关联规则挖掘是通过对具体项目赋予一定的权值来挖掘人们更加感兴趣的关联规则,其中具体项目的权值在数据库中是固定不变的。但现实数据库中,存在着所有项目权值会发生变化的问题。针对此类问题,文章提出新的加权关联规则模型,并提出了完全加权关联规则的挖掘算法。实验结果表明该算法是有效的。 Discovery of association rules with weighted items can find more interesting association rules,through giving the weight value for individual items.The weight value for individual items is fixed in database.However,the fact is that in real world database,the weight value for individual items is varied.Aiming at the problem,this paper put s forward a new model of weighted association rules for solving the problem,and proposes an algorithm to discover all-weighted association rules.The experiment shows that this algorithm is efficient.
出处 《计算机工程与应用》 CSCD 北大核心 2003年第13期208-211,共4页 Computer Engineering and Applications
基金 湖南省自然科学基金资助项目(编号:01JJY1007)资助
关键词 数据挖掘 知识发现 完全加权关联规则 向量空间模型 data mining,knowledge discovery,all-weighted association,vsm
  • 相关文献

参考文献9

  • 1王继成,潘金贵,张福炎.Web文本挖掘技术研究[J].计算机研究与发展,2000,37(5):513-520. 被引量:275
  • 2Agrawal R,Imielinski,T Swami A.Mining association rules between sets of items in large database[C].In:Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data,Washington, DC, 1993:207~216. 被引量:1
  • 3Agrawal R,Srikant R,Fast algorithm for mining association rules[C]. In :Proceedings of the 1994 International Conference on Very Large Data Bases,Santiago,Chile, 1994:487--499. 被引量:1
  • 4J Han,J Pei,Y Yin.Mining frequent patterns without candidate generation[R].Technical Report TR-99-12,Computing Science Technical Report,Simon Fraser University,,1999. 被引量:1
  • 5Jian Pei,Jiawei Han,Runying Mao.CLOSET:An ecient algorithm for mining frequent closed itemsets[C].In:ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery,2000:21-30. 被引量:1
  • 6J Hipp,A Myka,R Wirth et al.A new algorithm for faster mining of generalized association rules[C].In:Proc 2nd PKKD,1998. 被引量:1
  • 7Cai C H.Mining Association Rules with Weighted Items[C].In:Proeeedings of IEEE International database Engineering and Application Symposiums, 1988: 68-77. 被引量:1
  • 8W Wang,J Yang,P Yu.Efficient mining of weighted association rules (WAR)[R].IBM Research Report RC 21692(97734),2000. 被引量:1
  • 9Gyenesei A.Mining Weighted Association Rules for Fuzzy Quantitative Items[C].In:Proeeedings of PKDD Conference,2000:416--423. 被引量:1

二级参考文献4

共引文献274

同被引文献231

引证文献21

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部