期刊文献+

状态延迟输入神经网络及其在机器人定位监督控制中的应用 被引量:4

SDIDRNN and its Application to the Position Supervisory Control of Robots
下载PDF
导出
摘要 对复合输入动态递归网络作了改进 ,提出一种新的动态递归神经网络结构 ,称为状态延迟输入动态递归神经网络 (State Delay Input Dynamical Recurrent Neural Networks)。这种具有新的拓扑结构和学习规则的动态递归网络 ,不仅明确了各权值矩阵的含义 ,而且使权值的训练过程更为简洁 ,意义更为明确。网络增加了输入输出层前一步的状态信息 ,使其收敛速度和泛化能力与其他常用网络结构相比 ,均有明显提高 ,增强了系统实时控制的可能性。本文将该网络用于机器人定位监督控制系统中 ,通过利用神经网络建立起被控对象的逆模型 ,与传统 PD控制器结合 ,确保了控制系统的稳定性 ,有效地提高系统的精度和自适应能力。 A new neural network model named State Delay Input Dynamical Recurrent Neural Network (SDIDRNN) is presented. The model with new topological structure and learning algorithm has explicit significance for weight matrixes and makes training process of weights become more distinct and straightforward. Speed of learning and convergence and ability of generalization are improved by inputting the prior state knowledge of nodes in input layer and output layer, which make it possible for real time control. In this paper, the new neural network is applied to the system of supervisory control for position control of robot systems. By establishing inverse model of the controlled object with the new network and combining it with conventional PD controller, the stability or robustness of the system is ensured, and precision and adaptability is improved effectively. Simulation results show the efficiency and superiority of the new neural network.
出处 《机械科学与技术》 CSCD 北大核心 2003年第2期229-232,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目 (5 9975 0 0 1) 北京市自然科学基金项目 (30 12 0 0 3)资助
关键词 动态递归网络 监督控制 机器人 Dynamical recurrent neural networks Supervisory control Robot
  • 相关文献

参考文献5

二级参考文献6

  • 1王耀南,智能控制系统,1996年 被引量:1
  • 2王耀南,Advances In Modelling Analysis,1995年,49卷,2期,8页 被引量:1
  • 3王耀南,机器人,1995年,8卷,4期,10页 被引量:1
  • 4王耀南,控制理论与应用,1995年,12卷,4期,23页 被引量:1
  • 5Kung Sunyuan,IEEE Trans Robot Autom,1989年,5卷,5期,641页 被引量:1
  • 6周远清,智能机器人系统,1989年 被引量:1

共引文献16

同被引文献10

  • 1夏凯,陈崇端,洪涛,徐文立.补偿机器人定位误差的神经网络[J].机器人,1995,17(3):171-176. 被引量:12
  • 2Farzad P, Shiao J C. Neural networks for learning inverse kinematics of redundant manipulators [ A ]. International Joint Conference on Neural Networks-IJCNN-91-Seattle Part 2(of 2)[C], 1991 被引量:1
  • 3Narendra K S, Parthasarathy K. Identification and control for dynamic systems using neural networks [ J ]. IEEE Trans. on Neural Networks, 1990,1 ( 1 ): 4 - 27 被引量:1
  • 4Hou E S, Wibawa U. Artificial neural network for redundant manipulator inverse kinematics computation [ A ]. Proceedings of SPIE-The International Society for Optical Engineering[C], 1991, 16(7):668 -677 被引量:1
  • 5Guo J, Vladimir C. Solution to the inverse kinematic problem in robotics using neural network processing[ A ]. IJCNN International Joint Conference on Neural Networks[ C ], 1989 被引量:1
  • 6NARENDRA K S.Identification and control for dynamic systems using neural networks [J].IEEE Trans on Neural Networks,1990,1(1):4-27. 被引量:1
  • 7WU Chiaju,HUANG Chinghuo.Back-propagation neural networks for identification and control of a direct drive robot [J].J of Intelligent and Robotic Systems,1996,16(1):45-64. 被引量:1
  • 8Yildirim S.Neural network controller for cooperating robots[J].Electronics Letters,2001,37(22):1351-1352. 被引量:1
  • 9Narendra K S.Identification and control for dynamic systems using neural networks[J].IEEE Transaction on NeuralNetworks,1990,1 (1):4-27. 被引量:1
  • 10宋秩民.基于神经网络的弹性连杆机器人振动主动控制理论、方法与实验研究[D].天津大学博士论文,1999. 被引量:1

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部