摘要
利用多模压缩态理论 ,研究了由多模复共轭虚相干态 |{iZ j}〉q、多模复共轭虚相干态的相反态 |{ -iZ j}〉q 和多模复共轭相干态 |{Z j}〉q 的线性叠加所组成的新型三态叠加多模叠加态光场 |Ψ( 3 ) 〉q 中广义电场分量的偶数次不等幂次Nj 次方Y压缩特性 .结果发现 :在各模的压缩次数Nj=2 pj 且 pj=2m′j+1(m′j=0 ,1,2 ,3,… ,… )和Nj′=2 pj′且 pj′=2m′j′+1(m′j′=0 ,1,2 ,3,… ,… )的条件下 ,当各模的初始相位 φj 与 φj′、态间的初始相位差 (θ1-θ3 )与 (θ2 -θ3 ) ,以及各单模相干态光场总的平均光子数之和 qj=1R2 j 等分别满足一定的取值条件时 ,态 |Ψ( 3 ) 〉q 的广义电场分量(即第二正交相位分量 )总可呈现出周期性变化的、偶数次的广义非线性不等幂次Nj
It is studied systematically that even-number-power generalized nonlinear unequal-power N j-th power Y-squeezing properties of generalized electric field component in a new type of three state superposition multimode superposition state light field |Ψ (3)> q which is made of the multimode complex conjugation imaginary coherent state |{iZ * j}> q, the contrary state |{-i Z * j}> q of multimode complex conjugation imaginary coherent state |{i Z * j}> q , and the multimode complex coherent state |{Z * j}> q, by utilizing the multimode squeezed state theory established recently. It is found that if the squeezed-power-number of each mode in the state |Ψ (3)> q both N j=2p j, p j=2m ′ j+1(here, m ′ j=0,1,2,3,...,...) and N ′ j=2p j′,p j′=2m ′ j′+1(here, m ′ j′=0,1,2,3,...,...), while some certain conditions are satisfied respectively by the initial phase φ j and φ j′ of each mode in the state |Ψ (3)> q , by the initial phase difference (θ 1-θ 3) and (θ 2-θ 3) between any two components in the state |Ψ (3)> q , and by the sum qj=1R 2 j of mean photon-numbers of all the single-mode coherent state light field, the generalized electric field component (or the second perpendicular phase component) in the state |Ψ (3)> q can always display the effects of even-number-power generalized nonlinear unequal-power N j-th power Y-squeezing which changes periodically.
出处
《光子学报》
EI
CAS
CSCD
北大核心
2003年第4期489-493,共5页
Acta Photonica Sinica
基金
陕西省自然科学基金 (批准号 :2 0 0 1SL0 4
2 0 0 0SL10 )
陕西省教育厅专项科研基金 (批准号 :99JK0 91
0 0JK115 )
西北大学科学基金 (批准号 :99NW 3 8)资助项目