期刊文献+

基于有限外力扰动的OGY控制法 被引量:2

OGY Control Method Based on Bounded Outer-Force Perturbation
下载PDF
导出
摘要 运用传统OGY控制法对混沌系统进行控制时 ,一个明显的缺点是系统进入到受控状态所需要的等待时间太长 ,致使OGY方法的控制效率较低。为此 ,对OGY方法进行了改进 ,提出了一种基于有限外力扰动的OGY控制法 ,即通过对原始系统施加一个有限外力 ,来缩短系统进入受控状态的等待时间 ,从而提高了OGY方法的控制效率。同时 ,对方法的有效性进行了严格的理论分析。最后利用Logistic映射和Henon映射进行了数字模拟 ,验证了该方法的有效性和实用性 ,并展示了OGY方法的一些重要特性。 When the conventional OGY method is used to control chaotic systems, an obvious defect is that the waiting time the system needs to enter into the controlled state is too long, which brings about a low control efficiency. To solve this prablem, this paper modifies the conventional OGY method, and proposes a new method called OGY control method based on bounded outer force perturbation. By putting a bounded outer force on the original system, the waiting time is shortened, which improves the control effciency of the OGY method. At the same time, the validity of the suggested method is theoretically analyzed. In the end, the numerical simulation by means of the Logistic map and Henon map is made to verify the effectiveness and feasibility of the method, and show some important characteristics of the OGY method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2003年第1期61-64,共4页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题 ( 79970 0 43 )
关键词 混沌系统 OGY方法 有限外办扰动 控制效率 LOGISTIC映射 HENON映射 Chaotic system OGY method Bounded outer force perturbation Control efficiency Logistic map Henon map
  • 相关文献

参考文献11

  • 1[1]Chen Li qun. An Open-Plus-Chosed-Loop for Discrete Chaos and Hyperchaos[J]. Phys. Lett., 2001, A281: 327-333. 被引量:1
  • 2[2]Yang Tao, Yang Lin Bao, Yang Chun Mei. Theory of Control of Chaos Using Sampled Data[J]. Phys. Lett., 1998, A246: 284-288. 被引量:1
  • 3[3]Lu Jin Bu, Zhang Suo Chun. Controlling Chen' s Chaotic Attractor Using Backstepping Design Based on Parameters Identification [ J ]. Phys.Lett., 2001, A286:148 - 152. 被引量:1
  • 4[4]Ott E, Groebogi C, Yorke Y A. Controlling Chaos[J]. Phys. Rev.Lett., 1990, 64:1196 - 1199. 被引量:1
  • 5[5]Shinbrot Troy, Grebogi Celso, Ott Edward, et al. Using Small Perturbation to Control Chaos[J]. Nature, 1993, 363:411-417. 被引量:1
  • 6[6]Iplikci Serdar, Denizhan Yagmur. Control of Chaotic Systems Using Targeting by Extended Control Regions Mehtod[J]. Physica, 2001, D150:163 - 176. 被引量:1
  • 7[7]Cao L, Judd K, Mees A. Targeting Using Global Models Built from Nonstationary Data[J]. Phys. Lett., 1997, A231: 367-372. 被引量:1
  • 8[8]Shinbrot T, Ott E, Grebogi C, et al. Using Chaos to Direct Trajectories to Targets[J]. Phys. Rev. Lett., 1990, 65: 3215-3218. 被引量:1
  • 9[9]Barreto E, Kostelich E, Grebogi C, et al. Efficient Switching Between Controlled Unstable Periodic Orbits in Higher Dimensional Chaotic Systems[J]. Phys. Rev., 1995, E51: 4169-4172. 被引量:1
  • 10[10]Jackson E A, Hubler A. Periodic Entrainment of Chaotic Logistic Map Dynamics[J]. Physica, 1990, D44: 407-420. 被引量:1

同被引文献17

  • 1薛福珍,韩怀中.混沌预测在OGY方法中的应用[J].系统仿真学报,2001,13(z1):82-84. 被引量:1
  • 2Peng J P, Ding E J, Ding M, et al. Synchronizing hyperchaos with a scalar transmitted signal[J].Physical Review Letters, 1996,76 (2) : 904-907. 被引量:1
  • 3Kocarev L, Parlitz U. Generalized synchronization,predictable, and equivalence of unidirectionally coupled dynamical systems[J]. Physical Review Letters, 1996,76(3):1816-1819. 被引量:1
  • 4Pecora L M, Carroll T L. Synchronization of chaotic systems[J]. Physical Review Letters, 1990,64 (2) : 821-824. 被引量:1
  • 5Viera M d S, Lichtenberg A J, Lieberman M A.Synchronization of regular and chaotic systems[J].Physics Review A, 1992,46 (12): 7359-7362. 被引量:1
  • 6Cuomo K M, Oppenheim A V. Circuit implementation of synchronized chaos with applications to communications[J]. Physical Review Letters, 1993, 71(7) : 65-68. 被引量:1
  • 7Omer Morgül. On the synchronization of logistic maps[J]. Physics Review A, 1998,247(10):391-396. 被引量:1
  • 8Jackson E A, Grosu I. An open-plus-closed-loop(opcl)control of complex dynamical systems[J]. Phsica D,1995,85(1):1-9. 被引量:1
  • 9Chen Li-Qun. An open-plus-closed control for discrete chaos and hyperchaos[J]. Physics Lettes A, 2001,281 (4) : 327-333. 被引量:1
  • 10Ott E,Grebgi C,Yorke J A.Controlling chaos[J].Physical Review Letters,1990,(64):1 996-1 199. 被引量:1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部