期刊文献+

各向异性弹性力学场论的Hamilton体系

Hamilton′s system of elastic field theory for anisotropic body
下载PDF
导出
摘要 在弹性力学本征化理论的基础上,通过定义正则共轭动量密度,得到了不同变形条件下弹性力学场的Hamil ton密度函数,并由此给出了相应的Hamilton正则方程.采用分离变量方法,将弹性动力学解转变为Hamilton空间算子矩阵的本征值问题,对偶变量(模态应变和模态应变率)的全解通过本征解来展开而获得.此外,讨论了不同变形条件下弹性力学场论Hamilton体系的具体应用,得到了弹性小变形、弹性大变形和率相关变形条件下的静力学基本求解方程. Based on the eigen theory of elastic mechanics , the Hamilton density functions for various deformation process are obtained by defining the normal conjugate momentum density , and the Hamilton normal equations for elastic body are also given . Using the method of dividing variables , the solution of elastic dynamics can be changed into the eigen value problem of Hamilton's space differential operator matrix , and the total solution of dual variables (modal strain and modal strain rate ) can be obtained by expanding the eigen solutions . Finally , some specific applications of the elastic Hamilton principle for various deformation process are discussed , and the fundamental equations of elastic statics for several process, such as the little deformation process , the large deformation process and the deformation related to strain rate are given in details.
作者 郭少华 谢伟
出处 《中南工业大学学报》 CSCD 北大核心 2003年第2期211-213,共3页 Journal of Central South University of Technology(Natural Science)
关键词 弹性力学场 HAMILTON体系 对偶变量 正则方程 本征解 各向异性 连续介质 elastic mechanics Hamilton′s system dual variable normal equation eigen solution
  • 相关文献

参考文献2

二级参考文献3

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部