期刊文献+

Fractional Fourier Transformation for Quantum Mechanical Wave Functions Studied by Virtue of IWOP Technique 被引量:1

Fractional Fourier Transformation for Quantum Mechanical Wave Functions Studied by Virtue of IWOP Technique
下载PDF
导出
摘要 Starting from the optical fractional Fourier transform (FFT) and using the technique of integration withinan ordered product of operators we establish a formalism of FFT for quantum mechanical wave functions. In doing so, theessence of FFT can be seen more clearly, and the FFT of some wave functions can be derived more directly and concisely.We also point out that different FFT integral kernels correspond to different quantum mechanical representations. Theyare generalized FFT. The relationship between the FFT and the rotated Wigner operator is studied by virtue of theWeyl ordered form of the Wigner operator.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第4期417-420,共4页 理论物理通讯(英文版)
基金 国家自然科学基金,中国科学院院长基金,上海交通大学校科研和教改项目
关键词 fractional Fourier transformation IWOP technique Weyl ordering FFT 快速傅里叶变换 量子力学 波动力学 波函数 波动方程 IWOP
  • 相关文献

参考文献14

  • 1[1]V. Namias, J. Inst. Math. Appl. 25 (1980) 241. 被引量:1
  • 2[2]D. Mendlovic and H.M. Ozaktas, J. Opt. Soc. Am. (A) 10 (1993) 1875. 被引量:1
  • 3[3]A.W. Lohmann, J. Opt. Soc. Am (A) 10 (1993) 2181. 被引量:1
  • 4[4]Fan Hong-Yi, H.R. Zaidi, and J.R. Klauder, Phys. Rev. D35 (1987) 1831; Fan Hong-Yi and J.R. Klauder, Phys. Rev. A49 (1994) 704; Fan Hong-Yi and Fan Yue, Phys.Rev. A54 (1996) 958. 被引量:1
  • 5[5]Fan Hong-Yi and Fan Yue, Acta Physica Sinica (Overseas edition) 8 (1999) 161; Fan Hong-yi and Xu Zhi-hua, Phys. Rev. A50 (1994) 2921. 被引量:1
  • 6[6]A. Wiinsche, J. Opt. B: Quan. Semi-Class 2 (2000) R1. 被引量:1
  • 7[7]J.R. Klauder, et al., Coherent States, World Scientific,Singapore (1985). 被引量:1
  • 8[8]FAN Hong-Yi and RUAN Tu-Nan, Commun. Theor.Phys. (Beijing, China) ) 3 (1984) 443. 被引量:1
  • 9[9]E. Wigner, Phys. Rev. 40 (1932) 749. 被引量:1
  • 10[10]H. Weyl, Z. Phys. 46 (1927) 1. 被引量:1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部