期刊文献+

水热一步法合成Ti-SBA-15分子筛及其催化性能研究 被引量:26

Direct Synthesis of Titanium Substituted SBA-15 under Conventional Hydrothermal Conditions and Their Catalysis Characterization
下载PDF
导出
摘要 采用钛酸丁酯和乙酰丙酮作用后的产物作为钛的前驱体 ,水热法一步合成出了Ti SBA 15分子筛 .通过X射线衍射、N2 气吸附脱附、紫外 -可见漫反射等表征手段 ,证明在Si Ti=5 0 ,2 5 ,2 0时 ,钛原子成功地取代了SBA 15中的硅原子而没有改变SBA 15高度有序的介孔二维六角结构 ,其中钛全部以四配位状态存在 ,而且高度分散 .当Si Ti=12 5时 ,钛的分散度降低 ,部分钛聚集生成二氧化钛 .与用两步法合成的Ti SBA 15比较 ,一步法合成的Ti SBA 15中钛分散度好 ,添加量高 ,对催化氧化环己烯有较高的催化活性 .对一步法和两步法合成Ti SBA Titanium-substituted mesoporous molecular sieve SBA-15 have been first successfully synthesized by a new direct approach under conventional hydrothermal conditions. The products obtained by reacting titanium butoxide with acetylacetone were used as the titanium precursor. By means of X-ray diffraction, nitrogen adsorption, UV-Vis diffuse reflectance, a successful isomorphous substitution of titanium in the silica framework of SBA-15 samples with Si/Ti = 50, 25, 20 has been proved, the substitution of Ti for Si does not change the highly ordered two-dimensional hexagonal mesostructure of SBA-15. Titanium is totally tetrahedral and highly dispersed. Higher titanium loading leads to the formation of titanium dioxide. Comparing with two-step preparation method, it shows that under the direct synthesis method, or one-step preparation method, titanium and silicon precursor hydrolyze harmoniously. Ti-SBA-15 demonstrates relatively high catalytic ability on the oxidation of cyclohexene. The differences of structure and catalytic ability between Ti-SBA-15 synthesized by one-step method and two-step method are explained.
机构地区 复旦大学化学系
出处 《化学学报》 SCIE CAS CSCD 北大核心 2003年第2期202-207,共6页 Acta Chimica Sinica
基金 国家杰出青年科学基金 (No.2 992 530 9) 国家教育部上海纳米科技中心 (0 1 52nm0 2 9) 国家 973重大基础研究 (G2 0 0 0 0 4 80 0 1 )资助项目
关键词 水热一步法合成 Ti-SBA-15分子筛 催化性能 表征 催化活性 钛硅分子筛 催化剂 SBA-15 synthesis characterization catalytic oxidation
  • 相关文献

参考文献17

  • 1Taramasso, M.; Perego, G.; Notari, B. US 4410501, 1983[Chem. Abstr. 1984, 100, 88126]. 被引量:1
  • 2Camblor, A.; Constantini, M.; Corma, A.; Gilbert, L.;Esteve, P.; Martinez, A.; Valencia, S. Chem. Commun. 1996,1339. 被引量:1
  • 3Anderson, W.; Terasaki, O.; Ohsuna, T.; Philippou, A.;Mackay, S.P.; Ferreira, A.; Rocha, J.; Lidin, S. Nature 1994, 367, 347. 被引量:1
  • 4Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartali, J.C.; Beck, J. S. Nature 1992, 359, 710. 被引量:1
  • 5Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J. Nature 1994,368, 321. 被引量:1
  • 6Xiang, S.; Zhang, Y. L.; Xin, Q.; Melosh, N.; Fredrickson,G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279,548. 被引量:1
  • 7Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548. 被引量:1
  • 8Peng, W.; Takashi, T. Chem. Mater. 2002, 14, 1657. 被引量:1
  • 9Luan, Z.; Estelle, M. M.; Paula, W. H.; Zhao, D.; Romans,C.; Larry, K. Chem. Mater. 1999, 11, 3680. 被引量:1
  • 10Bharat, L. N.; Johnson, O.; Sridhar, K. Chem. Mater. 2001,13, 552. 被引量:1

同被引文献529

引证文献26

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部