期刊文献+

相关测量噪声的多传感器最优融合状态估计 被引量:5

Optimal state estimation for data fusion with correlated measurement noise
下载PDF
导出
摘要 当检测环境中有一个统一的噪声源时,各个传感器的测量噪声是相关的.许多算法都假设各个传感器的测量噪声是不相关的,因为这是保证测量噪声方差矩阵平行解耦的必要条件.基于矩阵相似变换的理论,提出了一种使多传感器相关测量噪声方差矩阵解耦的方法,该方法使多传感器数据融合测量模型转化成测量噪声不相关的新模型,推导了存在相关测量噪声的多传感器数据融合最优状态估计算法.当测量噪声不相关时,算法与以往的具有不相关噪声的最优算法相同. Measurement noises are correlated when the same noise source. Many fusion estimation algorithms assumed that measurement noise processes between the sensors are uncorrelated, which is the critical sufficient condition that allows successful parallel decomposition of the covariance matrix of the measurement noise. The matrix resemble transform theory was successfully used for parallel decomposition of the covariance matrix of correlated measurement noise and transform the linear observation models into new observation models. The optimal data fusion estimation algorithms are presented. When measurement noises are uncorrelated, the algorithms are equivalent to the optimal algorithms with uncorrelated measurement noise.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2003年第1期60-64,共5页 Journal of Zhejiang University:Engineering Science
关键词 数据融合 相关测量噪声 多传感器 最优融合状态估计 方差矩阵 平行解耦 信号估计 data fusion state estimation correlated measurement noise Kalman filter
  • 相关文献

参考文献8

  • 1[1]BAR-SHALOM Y. On the track-to-track correlation problem [J]. IEEE Transaction on Automatic Control, 1981, 26(2): 571-572. 被引量:1
  • 2[2]BAR-AHALOM Y, CAPMO L. The effect of the common process noise on the two-sensor fused-track covariance [J]. IEEE Transaction on Aerospace and Electronic Systems, 1986, 22(6): 803-805. 被引量:1
  • 3[3]CHANG K C, SAHA R K, BAR-SHALOM Y. On op-timal track-to-track fusion [J]. IEEE Transaction on Aerospace and Electronic Systems, 1997, 33 (4): 1271-1276. 被引量:1
  • 4[4]GAN Q, HARRIS C J. Comparison of two measurement fusion methods for Kalman-Filter-Based multisensor data fusion [J]. IEEE Transaction on Aerospace and Electronic Systems, 2001, 37(1): 273-280. 被引量:1
  • 5[5]ROECKER J A, McGillem C D. Comparison of two-sensor tracking methods based on state vector fusion and measurement fusion [J]. IEEE Transaction on Aerospace and Electronic Systems, 1988, 24(4): 447-449. 被引量:1
  • 6[7]HASHEMIPOUR H R, ROY S,LAUB A J. Decentralized structure for parallel Kalman filtering [J]. IEEE Transaction on Automatic Control, 1988, 33(1): 88-93. 被引量:1
  • 7[8]FRANKLIN J N. Matrix theory [M]. Englewood Cliffs, New Jersey: Drentice-Hall, Inc, 1985.109-120. 被引量:1
  • 8[9]SUMIT R, ILTIS R A. Decentralized linear estimation in correlated measurement noise[J]. IEEE Transaction on Aerospace and Electronic Systems, 1991, 27(6): 939-941. 被引量:1

同被引文献36

  • 1文成林,吕冰,葛泉波.一种基于分步式滤波的数据融合算法[J].电子学报,2004,32(8):1264-1267. 被引量:31
  • 2段战胜,韩崇昭,党宏社.测量噪声相关情况下的多传感器数据融合[J].计量学报,2005,26(4):360-363. 被引量:7
  • 3刘健,潘双夏,杨克己,冯培恩.全自动动平衡机关键技术研究[J].浙江大学学报(工学版),2006,40(5):777-782. 被引量:13
  • 4秦永元,等.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,2007. 被引量:45
  • 5程云鹏,张凯院,徐仲.矩阵论[M].西安:西北工业大学出版社,2006. 被引量:25
  • 6Sangho Ko,Robbcrt R.Bitmead state estimation for linear systems with state equality constraints[J].Autamatica,2007,43: 1363-1367. 被引量:1
  • 7HOLGER K, ANDREAS W. Protocols and architectures for wireless sensor networks[M]. Beijing: Publishing House of Electronics Industry, 2007 : 1 - 13. 被引量:1
  • 8SHI Ling. Resource optimization for networked estima- tor with guaranteed estimation quality ED]. Pasadena, California, USA~ California Institute of Technology, 2009 : 1 - 7. 被引量:1
  • 9SHI Ling, HARL H J, RICHARD M M. Change sen- sor topology when needed., how to efficiently use systemresources in control and estimation over wireless net- works[C]//Proceedings of the IEEE Conference on Deci- sion and Control. New Orleans, USA: IEEE, 2007.. 5478 - 5485. 被引量:1
  • 10BAR-SHALOM Y. On the track to track correlation problems [J]. IEEE Transactions on Automatic Control, 1981, 26(2): 571-572. 被引量:1

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部