期刊文献+

SWITCHED PROCESSES GENERALIZED MANDELBROT SETS FOR COMPLEX INDEX NUMBER 被引量:4

下载PDF
导出
摘要 According to the switched complex mapping proposed by the author, the methodconstructing the switched processes generalized M(Mandelbrot) sets was elaborated, and aseries of the switched processes generalized M sets for complex index number wereconstructed. The construction characteristics of the generalized M sets were expoundedaccording to the analysis of the algorithm constructing the generalized M sets. On the basisof what has already been achieved, the trajectories of a starting point in the complex C-planeunder the switched mapping were researched into. The results show that the switchedprocesses generalized M sets have the fractal feature, the construction characteristics of theswitched processes generalized M sets are dependent on the complex index number w and theswitched variable ro , and the reason which results in the discontinuity of the switchedprocesses generalized M sets is the discontinuity of choice of the principal range of the phaseangle.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第1期73-81,共9页 应用数学和力学(英文版)
基金 国家自然科学基金,辽宁省自然科学基金
  • 相关文献

参考文献20

二级参考文献99

  • 1王兴元,石其江.一类复指数映射的广义M-J集[J].自然科学进展,2004,14(8):934-940. 被引量:4
  • 2Mandelbrot B B. The Fractal Geometry of Nature [M]. San Francisco: Freeman W H, 1982. 被引量:1
  • 3Peitgen H O, Saupe D. The Science of Fractal Images [M].Berlin: Springer-Verlag, 1988. 被引量:1
  • 4Pickover C A. Computers and the Imagination [M]. New York: St. Martin's Press, 1992. 被引量:1
  • 5Pickover C A. Computers, Pattern, Chaos and Beauty [M].New York: St. Martin's Press, 1990. 被引量:1
  • 6Wang Xingyuan, Liu Xiangdong, Zhu Weiyong, et al. Analysis of c-plane fractal images from z←za + c for α< 0 [J].Fractals, 2000, 8(3): 307~314. 被引量:1
  • 7Carlson P W. Pseudo-3-D rendering methods for fractals in the complex plane [J]. Computer & Graphics, 1996, 20(5): 751~758. 被引量:1
  • 8Carlson P W. Two artistic orbit trap rendering methods for Newton M-set fractals [J]. Computer & Graphics, 1999, 23(6): 925~931. 被引量:1
  • 9Blancharel P. Complex analytic dynamics on the Riemann sphere [J]. Bulletin of the American Mathematical Society, 1984, 11:88 ~ 144. 被引量:1
  • 10Mandelbrot B B, The fractal geometry of nature[M].Son Fransisco: Freeman W H, 1982. 5-47. 被引量:1

共引文献25

同被引文献61

  • 1Mandelbrot B B, The fractal geometry of nature[M].Son Fransisco: Freeman W H, 1982. 5-47. 被引量:1
  • 2Peitgen H O, Saupe D. The science of fractal images[M]. Berlin: Springer-Verlag, 1988. 137-218. 被引量:1
  • 3Pickover C A. Computers, Pattern, Chaos and Beauty[M]. New York: St. Martin's Press, 1990.43-105. 被引量:1
  • 4Welstead S T, Cromer T L. Coloring periodicties of two-dimensional mappings[J]. Computers & Graphics,1989, 13(5): 539-543. 被引量:1
  • 5Wang Xingyuam Liu Xiangdong, Zhu Weiyong, et al.Analysis of α-plane fractal images from Z← Z^α+ c for α<0 [J]. Fractals, 2000, 8(3): 307-314. 被引量:1
  • 6Wang Xingyuan. Fractal stractures of the non-boundary region of the generalized Mandelbrot set [J]. Progressin Natural Science, 2001, 11(9): 693-700. 被引量:1
  • 7Wegner T, Peterson M, Fractal creations[J]. Mill Valley:The Waite Group Press, 1991.168-231. 被引量:1
  • 8Walter D J, Computer art representing the behavior of the Newton-raphson method [J]. Computers & Graphics, 1993, 17(4): 487-488. 被引量:1
  • 9Walter D J. Systemised serendipity for producing computer art[J]. Computers & Graphics, 1993, 17(6):699-700. 被引量:1
  • 10Chen Ning, Zhu X L, Chung K W. M and J sets from Newton's transformation of the transcendental mapping F(Z) = e^z^w+c with vcps [J]. Computers& Graphics, 2002, 26(3): 371-383. 被引量:1

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部