期刊文献+

二维抛物型方程的高精度多重网格解法 被引量:6

A High Accuracy Multigrid Method for the 2-D Parabolic Equation
下载PDF
导出
摘要 提出了数值求解二维抛物型方程的一种新的高精度加权平均紧致隐格式 ,利用Fourier分析方法证明了该格式是无条件稳定的 .为了克服传统迭代法在求解隐格式时收敛速度慢的缺陷 ,利用了多重网格加速技术 ,大大加快了迭代收敛速度 ,提高了求解效率 . A new high order compact weighted average implicit difference scheme for the two dimensional (2 D) Parabolic equation is presented and proved unconditional stable by Fourier analysis.A multigrid method is employed to overcome the difficulties when traditional relaxation methods are used to treat the implicit difference schemes.Numerical experiments are conducted to compare the new scheme with the existing schemes and the multigrid algorithms with the traditional relaxation method.It is shown that the new scheme is computationally more accurate than the second order schemes and multigrid algorithms are more efficient than the traditional relaxation method.
出处 《应用数学》 CSCD 北大核心 2003年第2期13-18,共6页 Mathematica Applicata
基金 国家自然科学基金资助项目 (1970 2 0 0 8) 宁夏自然科学基金资助项目
关键词 抛物型方程 精度 差分方法 多重网格法 CS格式 FAS格式 Parabolic equation Compact scheme High accuracy Multigrid
  • 相关文献

参考文献9

  • 1Press W H,Teukolsky S A, Vetterling W T, Flannery B P. Numerical Recipes,2nd ed[M]. Cambridge:Cambridge Univ. Press, 1992. 被引量:1
  • 2Brandt A. Multi-Level Adaptive Solution to Boundary-Value Problems[J]. Math Comput, 1977,31:333-390. 被引量:1
  • 3Gupta M Met al. Comparison of Second-and Fourth-Order Discretizations for Muhigrid Poisson Solvers[J]. J Comput Phys. 1997,132 : 226-232. 被引量:1
  • 4Zhang Jun. Accelerated Multigrid High Accuracy Solution of the Convection-Diffusion Equation with High Reynolds Number[J]. Numerical Methods for Partial Differential Equations, 1997,13:77-92. 被引量:1
  • 5Zhang Jun. Fast and High Accuracy Multigrid Solution of the Three Dimensional Poisson Equation[J]. JComput Phys, 1997,143 : 449-461. 被引量:1
  • 6Strikwerda J C. Finite Difference Schemes and Partial Differential Equations[M]. Cole: Wadsworth & Broods, 1989. 被引量:1
  • 7W哈克布思.多重网格方法[M].北京:科学出版社,1988.189-204. 被引量:2
  • 8Wesseling P W. An Introduction to Multigrid Methods[M]. Chichester:John Wiley & Sons,1992. 被引量:1
  • 9胡健伟,汤怀民著..微分方程数值方法[M].北京:科学出版社,1999:505.

共引文献1

同被引文献40

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部