期刊文献+

基于栈式卷积自编码的视觉SLAM闭环检测 被引量:12

Loop closure detection for visual SLAM based on stacked convolutional autoencoder
原文传递
导出
摘要 同时定位与构图(SLAM)主要用于解决移动机器人在未知环境中进行地图构建和导航的问题,是移动机器人实现自主移动的基础.闭环检测是视觉SLAM的关键步骤,对构建一致性地图和减少位姿累积误差具有重要作用.当前的闭环检测方法通常采用传统的SIFT、SURF等特征,很容易受到环境影响,为了提高闭环检测的准确性和鲁棒性,提出基于无监督栈式卷积自编码(CAEs)模型的特征提取方法,运用训练好的CAEs卷积神经网络对输入图像进行学习,将输出的特征应用于闭环检测.实验结果表明:与传统的BoW方法及其他基于深度学习模型的方法相比,所提出的算法能够有效降低图像特征的维数并改善特征描述的效果,可以在机器人SLAM闭环检测环节获得更好的精确性和鲁棒性. As the foundation to realize the autonomous movement of mobile robots,simultaneous localization and mapping(SLAM),which is mainly used to solve the problem of mobile robots mapping and navigation in unknown environment,has been paid more attention in recent years.Loop closure detection,one of the key steps of visual SLAM,plays an important role to make a globally consistent map and reduce accumulated error of robot pose.Current methods for loop closure detection are vulnerable to environmental influence because they always adopt traditional features such as SIFT and SURF.To improve the accuracy and robustness of loop closure detection,a method based on unsupervised Stacked Convolutional Autoencoders(CAEs)model is proposed.The trained CAEs convolution neural network is used to learn from input images,while the output features are used for loop closure detection.The results of experiment show that the proposed method,compared with traditional BoW-based methods and other methods based on deep learning model,can effectively reduce the dimension of image features and improve the effect of feature description.Thus,it can attain better accuracy and robustness in loop closure detection of robot SLAM.
作者 张云洲 胡航 秦操 楚好 吴运幸 ZHANG Yun-zhou;HU Hang;QIN Cao;CHU Hao;WU Yun-xing(College of Information Science and Engineering,Northeastern University,Shenyang 110004,China;Faculty of Robot Science and Engineering,Northeastern University,Shenyang 110004,China)
出处 《控制与决策》 EI CSCD 北大核心 2019年第5期981-988,共8页 Control and Decision
基金 国家自然科学基金项目(61471110 61733003) 国家重点研发计划项目(2017YFC080500015005) 中央高校基本科研业务费专项基金项目(N172608005 N160413002)
关键词 机器人 同时定位与构图 闭环检测 深度学习 无监督学习 栈式卷积自编码 robot SLAM loop closure detection deep learning unsupervised learning stacked convolutional autoencoders
  • 相关文献

参考文献5

二级参考文献86

  • 1厉茂海,洪炳镕,罗荣华.移动机器人的同时定位和地图创建方法[J].哈尔滨工业大学学报,2004,36(7):874-876. 被引量:4
  • 2陈卫东,张飞.移动机器人的同步自定位与地图创建研究进展[J].控制理论与应用,2005,22(3):455-460. 被引量:59
  • 3Newman E On the structure and solution of the simultaneous localization and map building problem [D]. Sydney: University of Sydney, 2000. 被引量:1
  • 4Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part Ⅰ[J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-110. 被引量:1
  • 5Bailey T, Durrant-Whyte H. Simultaneous localization and mapping: Part Ⅱ[J]. IEEE Robotics and Automation Magazine, 2006, 13(3): 108-117. 被引量:1
  • 6Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping problem[C]. Proc of the AAAI National Conf on Artificial Intelligence. Edmonton, 2002: 593-598. 被引量:1
  • 7Montemerlo M, Thrun S, Koller D, et al. FastSLAM2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges[C]. Proc of the AAAI National Conf on Artificial Intelligence. Acapulco, 2003:1151-1156. 被引量:1
  • 8Bailey T, Nieto J, Nebot E. Consistency of the FastSLAM algorithm[C]. Int Conf on Robotics and Automation. Orlando, 2006: 424-429. 被引量:1
  • 9Wan E A, R van der Merwe. The unscented Kalman filter for nonlinear estimation[C]. Adaptive Systems for Signal Processing, Communications and Control Symposium. Lake Louise, 2000: 153-158. 被引量:1
  • 10Wang X, Zhang H. A UPF-UKF framework for SLAM[C]. Int Conf on Robotics and Automation. Roma, 2007: 1664- 1669. 被引量:1

共引文献145

同被引文献83

引证文献12

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部