期刊文献+

基于PCA模型的人脸图像纹理特征高精度识别方法 被引量:3

High-precision Recognition Method for Face Image Texture Features Based on PCA Model
下载PDF
导出
摘要 针对传统人脸图像纹理特征识别方法中存在的计算量大,样本训练与测试时间较长,识别正确率较低等问题,提出一种新的基于PCA模型的人脸图像纹理特征高精度识别方法。在人脸图像预处理过程中,采用Gabor滤波器确定人脸图像训练样本中的双眼位置,结合卷积运算与人脸几何模型从图像中分割出目标人脸区域,并对分割得到的图像进行规范化处理;采用PCA模型对预处理后的图像进行降维与特征向量提取,并根据选取的主要纹理特征以及欧式距离近似度量结果,实现人脸图像纹理特征高精度识别。实验结果表明,所提方法的识别准确度高于实验对比方法,且样本训练时间与测试时间明显缩短,具有较好的鲁棒性。 Aiming at the problems existing in traditional face image texture feature recognition methods,such as large amount of computation,long training and testing time,low recognition accuracy,a new high-precision face image texture feature recognition method based on PCA model is proposed.In the process of face image preprocessing,Gabor filter is used to determine the binocular position of the training sample of face image,convolution operation and face geometry model are combined to segment the target face area from the image,and normalize the segmented image;PCA model is used to reduce the dimension of the preprocessed image and extract the feature vectors,and according to the selected main texture features.The feature and Euclidean distance approximation measure results are used to realize high-precision recognition of face image texture features.The experimental results show that the recognition accuracy of the proposed method is higher than that of the experimental comparison method,and the training time and testing time of the samples are significantly shortened,which has better robustness.
作者 李跃飞 Li Yuefei(Hunan Institute of Information Technology,School of Electronic Information,Changsha 410151,China)
出处 《科技通报》 2019年第7期135-138,142,共5页 Bulletin of Science and Technology
关键词 PCA 人脸图像 纹理特征 识别 PCA face image texture feature recognition
  • 相关文献

参考文献10

二级参考文献112

  • 1张旗,梁德群,樊鑫,李文举.基于小波域的图像噪声类型识别与估计[J].红外与毫米波学报,2004,23(4):281-285. 被引量:32
  • 2刘向东,陈兆乾.人脸识别技术的研究[J].计算机研究与发展,2004,41(7):1074-1080. 被引量:17
  • 3张小洪,李博,杨丹.一种新的Harris多尺度角点检测[J].电子与信息学报,2007,29(7):1735-1738. 被引量:78
  • 4王志良,人脸工程学[M].北京:机械工业出版社,2010. 被引量:1
  • 5罗婵娟.快速二维PCA方法在人脸识别中的应用研究[D].无锡:江南大学,2003. 被引量:1
  • 6齐兴敏,刘冠梅.基于PCA算法的人脸识别技术研究[J].现代电子技术,2007,29(6):77-79. 被引量:1
  • 7YANG J, DAVID Z. Two-dimensional PCA: a new approach to appearance- based face representation and Recognition [ J ]. IEEE PAM1,2004 ,26 ( 1 ) : 131-137. 被引量:1
  • 8XIE X D, KIN M L. Gabor-based kernel PCA with doubly nonlinear mapping for face recognition with a single face- image[J]. IEEE transactions on image processing,2006, 15(9) :2481-2492. 被引量:1
  • 9Maja Pantic, Anton Nijholt, Alex Pentland, et al. Human-Centred Intelligent Human-Computer Interaction (HCI): how far arewe from attaining it [J]. International Journal of Autonomous & Adaptive Communications Systems(S1754-8640), 2008 1(2): 168-187. 被引量:1
  • 10Vinciarelli A, Pantic M, Bourlard H. Social Signal Processing: Survey of an Emerging Domain [J]. Image and Vision Computing(S0262-8856), 2009, 27(12): 1743-1759. 被引量:1

共引文献80

同被引文献23

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部