摘要
利用重庆地区奉节县、合川区、长寿区、彭水县、梁平县、涪陵区、綦江区、万州区、沙坪坝区、丰都县、大足区和江津区1986-2016年夏季极端高温(≥40℃)天数数据,运用线性倾向率和累积距平法来分析重庆夏季极端气温特征及变化趋势,得出以下结论:(1)近30年重庆市极端高温天数总体在逐年上升。(2)重庆在20世纪末的极端高温发生在1994年前后,并发生较小的波动,进入21世纪,极端高温峰值出现在2006年,近10年来,重庆极端高温天数(≥40℃)逐渐增加趋势明显。(3) 2006年以前重庆极端高温天数(≥40℃)在波动中先上升后下降,且振幅较小,2006年以后极端高温天数(≥40℃)逐渐波动上升。(4)凹陷地形导致气流不通畅,夏季青藏高原高压和西太平洋副热带高压、厄尔尼诺事件对重庆地区影响较大,城市化进程加剧,人类活动频繁,均导致极端高温天数多。
In this paper,we use the data of extreme high temperature(≥40℃)from 1986 to 2016 in Fengjie,Hechuan,Longevity,Pengshui,Liangping,Fuling,Qijiang,Wanzhou,Shapingba,Fengdu,Dazu and Jiangjin in Chongqing.To analyze the characteristics of summer extreme temperature in Chongqing and the trend of change,we can draw the following conclusions:(1)The number of extremely hot days in Chongqing in recent 30 years has been increasing year by year.(2)The extreme high temperature in Chongqing at the end of the 20 th century occurred around 1994 with minor fluctuations.Entering the 21 st century,the peak of extreme high temperature appeared in 2006.In the recent 10 years,the days of extreme high temperature(≥40℃)in Chongqing gradually increased The trend is obvious.(3)Before 2006,the number of extremely high temperature days(≥40℃)in Chongqing fluctuated firstly and then decreased,with a small amplitude.After 2006,the number of extremely hot days(≥40℃)increased gradually.(4)The depression terrain led to unobstructed air flow.In summer,the Tibetan Plateau high pressure and the western Pacific subtropical high.The El Niňo event has a greater impact on Chongqing.The urbanization process is aggravated and human activities are frequent,leading to extremely high temperature days.
作者
毛泳
王勇
Mao Yong;Wang Yong(School of Geography Science,Southwest University,Chongqing 400715,China;Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment,Ministry of Education,Chongqing 400715,China)
出处
《科技通报》
2019年第4期60-68,共9页
Bulletin of Science and Technology
基金
重庆市发展和改革委员会学术委员会研究课题(编号:4080491)
中央高校基本科研业务费项目(编号:XDJK2013C050)
关键词
重庆
极端高温天数
线性倾向率
累积距平法
Chongqing
extreme high temperature days
linear inclination rate
cumulative pitch method