摘要
R是实数域,SKn(R)表示R上n×n反对称矩阵空间(其中n≥4,并且n为偶数),本文刻画了SKn(R)到自身满足f(A)f(B)f(C)=f(C)f(A)f(B)当且仅当ABC=CAB的加法满射f的形式,并且又刻画了SKn(R)到自身满足g(A1)g(A2)…g(A2k+1)=g(At1</sub>)g(At2</sub>)…g(At2k+1</sub>)当且仅当A1A2…A2k+1=At1</sub>At2</sub>…At2k+1</sub>的加法满射g的形式,其中k≥1,k∈Z,t1,t2,…,t2k+1是1,2,…,2k+1的任意排列。
Let Ris a real number field, SKn(R) be the set of all n×n anti-symmetric matrices over R(n≥4 and n is even number). We characterize the additive subjective map on SKn(R) and f(A)f(B)f(C)=f(C)f(A)f(B) if and only if ABC=CAB, and characterize the additive subjective map on SKn(R) andg(A1)g(A2)…g(A2k+1)=g(At1</sub>)g(At2</sub>)…g(At2k+1</sub>) if and only if A1A2…A2k+1=At1</sub>At2</sub>…At2k+1</sub>,k≥1,k∈Z,t1,t2,…,t2k+1 is arbitrary arrangement for 1,2,…,2k+1.
出处
《科技通报》
2018年第11期32-36,共5页
Bulletin of Science and Technology
基金
黑龙江省教育厅基本业务专项(135109232)
关键词
实′数域
反对称矩阵空间
加法满射
保可交换
real number field
antisymmetric matrix spaces
additive subjective map
preserver commutation