摘要
证明了定义在〔a,b〕上的有界函数 f(x) ,若只有第一类间断点 ,则 f(x)在〔a ,b〕上Riemann可积。另外 ,证明了一个导函数只能有第二类间断点 ,有间断点的单调函数不存在原函数。
It is proved that if a function f(x) defined on 〔a, b〕has only discontinuous points of the first class, then it is Riemann integrable on 〔a, b〕, In additon, it is proved that a derivative function can only have discontinuous points of the second class and a monotonic function with discontinuous points donot have primitive function.
出处
《山东科技大学学报(自然科学版)》
CAS
2003年第1期21-22,共2页
Journal of Shandong University of Science and Technology(Natural Science)