期刊文献+

利用标准化LDA进行人脸识别 被引量:22

Normalized LDA Method for Face Recognition
下载PDF
导出
摘要 线性判别分析 (LDA)是一种较为普遍的用于特征提取的线性分类方法 提出一种基于LDA的人脸识别方法———标准化LDA ,该方法克服了传统LDA方法的缺点 ,重新定义了样本类间离散度矩阵 ,在原始定义的基础上增加一个由类间距离决定的可变权函数 ,使得在选择投影方向时 ,能够更好地分开各个类的样本 ;同时 ,它采用一种合理而有效的方法解决矩阵奇异的问题 ,即保留样本类内离散度矩阵的零空间 ,因为这个空间包含了最具有判别能力的信息 在这个零空间里 ,寻找对应于样本类间离散度矩阵的较大特征值的特征向量作为最后降维的转换矩阵 实验结果显示 ,在人脸识别中 ,与传统LDA方法相比 ,该方法有更好的识别率 Linear Discriminant Analysis (LDA) is one of the most popular linear classification techniques for feature extraction. A new approach of Normalized-LDA is introduced to overcome the drawbacks existing in the traditional LDA method. It redefines the between-class scatter by adding a weight function according to the between-class distance. Therefore, it can separate the classes as much as possible. At the same time, it projects the between-class scatter into the null space of within-class scatter that contains the most discriminant information. Hence, the transformation matrix composed with the largest eigenvectors of the transferred between-class scatter can maximize the Fisher Criteria. Experimental results show this method achieves better performance of face recognition in comparison with the traditional LDA method. It can also be applied to other problems of image recognition.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2003年第3期302-306,共5页 Journal of Computer-Aided Design & Computer Graphics
关键词 线性判别分析(LDA) 样本类间离散度 样本类内离散度 小样本集合问题 边缘类 linear discriminant analysis (LDA) between-class scatter within-class scatter small sample size problem outlier
  • 相关文献

参考文献8

  • 1R Chellappa, C L Wilson, S Sirohey. Human and machine recognition of faces: A survey [J]. Proceedings of the IEEE, 1995, 83(5): 705~741 被引量:1
  • 2P N Belhumeur, J P Hespanha, D J Kriegman. Eiegnfaces vs. fisherfaces: Recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720 被引量:1
  • 3D Swets, J Weng. Using discriminant eigenfeatures for image retrieval [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18 (8): 831~836 被引量:1
  • 4M Turk, A Pentland. Eigenfaces for Recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71~86 被引量:1
  • 5H Yu, J Yang. A direct LDA algorithm for high dimensional data with application to face recognition[J]. Journal of Pattern Recognition, 2001, 34(10): 2067~2070 被引量:1
  • 6L Chen, H Liao, M Ko et al. A new LDA-based face recognition system which can solve the small samples size problem [J]. Journal of Pattern Recognition, 2000, 33(10): 1713~1726 被引量:1
  • 7M Loog, R P W Duin, R Haeb-Umbach. Multiclass linear dimension reduction by weighted pairwise fisher criteria [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (7): 762~766 被引量:1
  • 8AT & T Laboratories Cambridge. The ORL Database of Faces[OL]. http:∥www.cam-orl.co.uk/facedatabase.html 被引量:1

同被引文献195

引证文献22

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部