期刊文献+

碳纳米管的分子动力学模拟 被引量:7

Molecular Dynamics Simulation of Carbon Nanotube
下载PDF
导出
摘要 碳纳米管的纳米级尺寸在很大程度上限制了人们对它的了解、测试与观察,严重地影响了它的发展和应用。因此,必须有简单可行的方法来合理计算、测量碳纳米管的各种特性,计算机模拟无疑是研究这种特殊材料的极佳方法。采用分子动力学模拟[1]的方法,来模拟碳纳米管的物理特性。首先模拟了碳纳米管的热稳定性,发现单壁开口碳纳米管的热稳定性将随着管径的增大而变差,同时开口碳纳米管在真空中保持稳定的极限温度在3000K左右;接着模拟了两根开口碳纳米管的碰撞过程以及成键情况,模拟结果表明在开口端的碳原子非常活跃,极易与其它活性原子成键并且形成新的分子结构,这预示了只要使用一些简单的切割和组合就可以用碳纳米管组成纳微机械;最后对碳纳米管轴承结构的研究显示出碳纳米管之间仅仅存在很小的范德华力,这种独特的特性预示着碳纳米管构成的纳微机械会有卓越的机械特性。 Carbon nanotube(CNT)is a fundamental component of nanoscience and nanotechnology. The small size of nanostructures constrains the applications of wellestablished testing and measurement techniques. Thus computer simulation methods must be developed for property characterization and device simulation of carbon nanotubes. Our research is focused on molecular dynamics(MD)simulation method applied to CNT.First,the thermostability of carbon nanotube in vacuum is investigated.Result shows that with the diameter of the CNT increasing,the thermostability gets worse and there's a critical temperature about 3 000K.Above this temperature,bonds in the tube will break. Then a collision process of two pieces of CNT with open ends is simulated.The final evidence proves that the atoms in the open end of CNT are more active and they are easily compound with other active atoms to form new molecular construction. This characteristic implies the nanomachine conld be made with CNT only by some simple cutting and assembling. Finally,a nanobearing is simulated using MD method and the result shows that only small Vander Waals force exists between two pieces of CNT.This implies that the nanomachine made of CNT has excellent mechanical property than it made of other materials.
出处 《微细加工技术》 2003年第1期9-14,共6页 Microfabrication Technology
基金 国家自然科学基金资助项目(60036016 50077017) 国家博士点教育基金资助项目(98069828)
关键词 碳纳米管 分子动力学 模拟 carbon nanotube molecular dynamics simulation
  • 相关文献

参考文献8

  • 1DW Brenner. Empirical potential for hydrocarbon for use in simulation the chemical vapor deposition of diamond films[J ]. Phys Rev B, 1990,42: 9458. 被引量:1
  • 2S Iijima. Helical microtubules of graphitic carbon[J]. Nature, 1991,345:56 - 58. 被引量:1
  • 3DW Brenner, OA Shenderova, JA Harrison, et al. Second generation reactive empirical bond order(REBO)potential energy expression for hydrocarbons[J]. Journal of Physics,2002,14:783- 802. 被引量:1
  • 4Lennard Jones J E. Proc Roy Soc London, 1924,A106:463. 被引量:1
  • 5Zhenhua Yao, Changchun Zhu. Mechanical properties of carbon nanotube by Molecular dynamics simulation [J ]. Computational Material Science,2001,22:180 - 184. 被引量:1
  • 6Falvo M R,Clary G J,Taylor R M. Bending and buckling of carbon nanotubes under large strains[ J ]. Nature, 1997,389: 352 - 354. 被引量:1
  • 7John Cumings, A Zettl. Low-friction nanoseale linear bearing realized from multiwall carbon nanotubes[J ]. Science, 2000,289 (28): 602 - 604. 被引量:1
  • 8Jie Han,A1 Globus,Jaffe R,et al. Molecular dynamics simulation of carbon nanotube based gears[J]. Nanotechnology, 1997,8: 95 - 102. 被引量:1

同被引文献90

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部