期刊文献+

基于灵敏度矩阵特征值的索杆张力结构主动张拉索优选方法 被引量:1

An approach for choosing optimal actively-stretched cables of cable-strut tensile structures based on eigenvalue of sensitivity matrix
原文传递
导出
摘要 施工时合理选择主动张拉索是控制索杆张力结构预张力偏差的主要措施。以单元的预张力偏差平方和作为评价整体结构预张力偏差的指标,通过对反映单元预张力偏差与索长误差关系的灵敏度矩阵进行谱分解,将该指标表示为索长误差与灵敏度矩阵的特征值和特征向量的解析关系式,理论上解释了选择不同主动张拉索会使灵敏度矩阵特征值发生变化,从而直接影响到对结构预张力偏差的控制效果。由于灵敏度矩阵特征值具有衰减迅速的特点,故采用其一阶特征值和特征向量可有效估计结构的最不利预张力偏差。进一步以灵敏度矩阵的一阶特征值为评价指标,基于遗传算法提出了一种主动张拉索的优选方法。以一实际索杆张力结构为例,进行不同条件下的主动张拉索优选分析,其结果验证了优选方法的有效性。 An appropriate choice of actively-stretched cables is the main measure to control the pretension deviation during the construction of cable-strut tensile structure. The quadratic sum of elemental pretension deviations is adopted as an index to evaluate the pretension deviation of the whole structure. By means of the spectral decomposition of the sensitivity matrix,which reflects the relationship between cable length errors and pretension deviations,this index can be expressed as an analytical form relating to the cable length errors,the eigenvalues of the sensitivity matrix as well as its eigenvectors. Theoretically,the different choice of actively-stretched cables is expounded to lead to change of the eigenvalues of sensitivity matrix,and directly impact on the control effect of structural pretension deviation. Due to the rapid attenuation of the eigenvalues of sensitivity matrix,the unfavorable structural pretension deviation can be effectively estimated by only using its first-order eigenvalue and eigenvector. Adopting the first-order eigenvalue of sensitivity matrix as the evaluating indicator,an optimization algorithm for choosing actively-stretched cables is put forward based on the Genetic Algorithm. The optimal actively-stretched cables of a practical cable-strut tensile structure are analyzed under different conditions. The results reveal the validity of the method put forward in this paper.
作者 邓华 夏巨伟
出处 《建筑结构学报》 EI CAS CSCD 北大核心 2014年第9期123-130,共8页 Journal of Building Structures
基金 国家自然科学基金项目(50978226) 温州市科技计划项目(S20120001)
关键词 索杆张力结构 预张力偏差 主动张拉索优选 灵敏度矩阵 特征值 cable-strut tensile structure pretension deviation optimization of actively-stretched cables sensitivity matrix eigenvalue
  • 相关文献

参考文献9

二级参考文献46

共引文献47

同被引文献14

  • 1夏巨伟,邓华.索杆张力结构最不利预张力偏差的近似解析方法[J].工程力学,2015,32(6):8-14. 被引量:1
  • 2柳承茂,刘西拉.基于刚度的构件重要性评估及其与冗余度的关系[J].上海交通大学学报,2005,39(5):746-750. 被引量:99
  • 3PELLEGRINO S, CALLADINE C. Matrix analysis of statically and kinematically indeterminate frameworks[J]. International Journal of Solids and Structures, 1986, 22(4):409-428. 被引量:1
  • 4STRBEL D, SINGER P. Recent developments in the computational modelling of textile membranes and inflatable structures[C]∥Textile Composites and Inflatable Structures II. Netherlands: Springer, 2008: 253-266. 被引量:1
  • 5TIBERT G. Distributed indeterminacy in frameworks[C]∥Proceedings of the 5th International Conference on Computation of Shell and Spatial Structures. Satzburg, Austria: IASS-IACM, 2005: 1-5. 被引量:1
  • 6ERIKSSON A, TIBERT A G. Redundant and force-differentiated systems in engineering and nature[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41-43): 5437-5453. 被引量:1
  • 7CHEN Q, KOU X J. A constraint matrix approach for structural ultimate resistance to access the importance coefficient values of rigid joints[J]. Advances in Structural Engineering, 2013, 16(11): 1863-1870. 被引量:1
  • 8PELLEGRINO S. Structural computations with the singular value decomposition of the equilibrium matrix[J]. International Journal of Solids and Structures, 1993, 30(21): 3025-3035. 被引量:1
  • 9CHEN W J, ZHOU J Y, ZHAO J Z. Computational methods for the zero-stress state and the pre-stress state of tensile cable-net structures[J]. Journal of Zhejiang University-Science A, 2014, 15(10): 813-828. 被引量:1
  • 10ZHOU J Y, CHEN W J, ZHAO B, et al. Distributed indeterminacy evaluation of cable-strut structures: Formulations and applications[J]. Journal of Zhejiang University-Science A, 2015, 16(9): 737-748. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部