摘要
Background: Heavy backpacks are often used by soldiers and firefighters. Weight carrying could reduce the speed and efficiency in task completion by altering the foot sole sensitivity and postural control.Methods: In fifteen healthy subjects, we measured the changes in sensitivity to vibrations applied to the foot sole when standing upright or walking after load carrying(30% body weight). The participants were asked to judge different vibration amplitudes applied on the 2 nd or 5 th metatarsal head and the heel at two frequencies(25 and 150 Hz) to determine the vibration threshold and the global perceptual representation(Ψ)of the vibration amplitude(Φ)given by the Stevens power function(Ψ=k×Φ~n). Any increase in negative k value indicated a reduction in sensitivity to the lowest loads. Pedobarographic measurements, with computation of the center of pressure(COP) and its deviations, were performed during weight carrying.Results: The 25-Hz vibration threshold significantly increased after weight carrying when standing upright or walking.After standing with the added loads, the absolute negative k value increased for the 25 Hz frequency. After walking with the added loads, the k coefficient increased for the two vibration frequencies. Weight carrying significantly increased both the CoP surface and CoP lateral deviation.Conclusions: Our data show that weight carrying reduces the sensory pathways from the foot sole and accentuates the center of pressure deviations.
Background: Heavy backpacks are often used by soldiers and firefighters. Weight carrying could reduce the speed and efficiency in task completion by altering the foot sole sensitivity and postural control.Methods: In fifteen healthy subjects, we measured the changes in sensitivity to vibrations applied to the foot sole when standing upright or walking after load carrying(30% body weight). The participants were asked to judge different vibration amplitudes applied on the 2 nd or 5 th metatarsal head and the heel at two frequencies(25 and 150 Hz) to determine the vibration threshold and the global perceptual representation(Ψ)of the vibration amplitude(Φ)given by the Stevens power function(Ψ=k×Φ~n). Any increase in negative k value indicated a reduction in sensitivity to the lowest loads. Pedobarographic measurements, with computation of the center of pressure(COP) and its deviations, were performed during weight carrying.Results: The 25-Hz vibration threshold significantly increased after weight carrying when standing upright or walking.After standing with the added loads, the absolute negative k value increased for the 25 Hz frequency. After walking with the added loads, the k coefficient increased for the two vibration frequencies. Weight carrying significantly increased both the CoP surface and CoP lateral deviation.Conclusions: Our data show that weight carrying reduces the sensory pathways from the foot sole and accentuates the center of pressure deviations.
基金
supported by the School of Podiatry of Marseille