期刊文献+

基于球面特征的点云配准方法研究 被引量:1

Research on Registration Method of Point Clouds Based on Spherical Feature
下载PDF
导出
摘要 针对多视点云的配准问题,提出了基于球面特征的自动配准方法。在测量的零件周围固定标准球,把零件和标准球作为一个整体进行点云测量。用球面拟合的方法求解标准球的球心坐标,并在待配准点云的球心坐标中搜索对应点,从而计算粗配准中的旋转矩阵和平移矩阵,实现点云的粗配准,采用融入球心坐标信息的改进的ICP算法(迭代最近点法)实现点云的精配准。这种方法大大缩少了粗配准中对应点的搜索范围,并实现了自动配准,提高了配准效率,改进的ICP算法增强了配准算法的鲁棒性,实例证明该方法有效。 For multi-view point cloud of registration,an automatic matching algorithm based on the spherical feature was proposed. The standard balls around the measurement parts was fixed,and then the parts and standard balls as a whole was been measured. The spherical center coordinates was found via spherical fitting. Then the corresponding points in the spherical center coordinates belong to the point cloud to be registered was searched,and the corresponding points to calculate the registration of rotation matrix and translation matrix was used,those was used to point cloud of coarse registration. Finally,an improved ICP( Iterative Closest Point) algorithm was used to integrate the sphere coordinate information center to the point cloud of precise registration. The present registration method greatly reduced the coarse registration of corresponding point search,and the automatic registration was been implemented. The present algorithm also improved the registration efficiency and the improved ICP algorithm enhances the robustness of matching algorithm. The examples verifies that the method is effective.
出处 《机械科学与技术》 CSCD 北大核心 2015年第12期1851-1856,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(51075362) 浙江省自然科学基金项目(Y1100073) 宁波市产业技术创新及成果产业化重点项目(2013B10022)资助
关键词 自动配准算法 球面特征 点云配准 旋转矩阵 平移矩阵 algorithms automobiles calculations computational efficiency efficiency feature extraction flowcharting matrix algebra measurements robustness(control systems) automatic matching algorithm point cloud registration rotation matrix spherical feature translation matrix
  • 相关文献

参考文献16

  • 1Joaquim Salvi,Carles Matabosch,David Fofi,Josep Forest.??A review of recent range image registration methods with accuracy evaluation(J)Image and Vision Computing . 2006 (5) 被引量:1
  • 2Johnson A E.Spin-images: a Representation for3-D Surface Matching. . 1997 被引量:1
  • 3Jost T.Fast geometric matching for shape registration. . 2002 被引量:1
  • 4S. Rusinkiewicz,M. Levoy.Efficient Variants of the ICP Algorithm. The Third InternationalConference on3D Digital Imaging and Modeling . 2001 被引量:1
  • 5Masuda T,Sakaue K,Yokoya N.Registration and integration of multiple range images for 3-D model construction. Proceedings of the 13th International Conference on Pattern Recognition . 1996 被引量:1
  • 6Lee, Jiann-Der,Huang, Chung-Hsien,Liu, Li-Chang,Lee, Shin-Tseng,Hsieh, Shih-Sen,Wang, Shuen-Ping.A modified soft-shape-context ICP registration system of 3-d point data. IEICE Transactions on Information and Systems . 2007 被引量:1
  • 7Besl PJ,McKay ND.A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1992 被引量:2
  • 8Greg Turk,Marc Levoy.Zippered polygon meshes from range images. SIGGRAPH ’94:Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques . 1994 被引量:1
  • 9Stockman G C.Object recognition and localization via pose clustering. Computer Vision . 1987 被引量:1
  • 10Hecker, Y.C.,Bolle, R.M.On geometric hashing and the generalized Hough transform. Systems, Man and Cybernetics, IEEE Transactions on . 1994 被引量:1

二级参考文献15

  • 1熊邦书,何明一,俞华璟.三维散乱数据的k个最近邻域快速搜索算法[J].计算机辅助设计与图形学学报,2004,16(7):909-912. 被引量:65
  • 2Sarkar M,Leong T.Application of k-nearest neighbors algorithm on breastcancer diagnosis problem[C].In Proceedings of the 2000 AMIA AnnualSymposium,L.A.,2000. 被引量:1
  • 3Michael Connor,Piyush Kumar.Fast construction of k-Nearest NeighborGraphs for Point Clouds[C].IEEE Transactions On Visualization AndComputer Graphics,2009. 被引量:1
  • 4Sankaranarayanan J.,Samet H.,and A.Varshney.A fast all nearestneighbor algorithm for applications involving large point-clouds[J].Comput.Graph.,2007,31(2):157-174. 被引量:1
  • 5Procopiuc O,Agarwal P K,Arge L,et al.Bkd-tree:a dynamic scalablekd-tree[C].Proc International Symposium on Spatial and TemporalDatabases,2003. 被引量:1
  • 6Mitra N.J.,Nguyen A.Estimating surface normals in noisy point cloud data[C].In SCG’03:Proceedings of the nineteenth annual symposium onComputational geometry,pages 322-328,New York,NY,USA,2003. 被引量:1
  • 7R.Pajarola.Stream-processing points[C].In Proceedings IEEE Visualizat-ion,2005,Online.,pages 239-246.Computer Society Press,2005. 被引量:1
  • 8Arya S.,Mount D.M.,Netanyahu N.S.,et al.An optimal algorithm forapproximate nearest neighbor searching in fixed dimensions.[J.] ACM,1998(45):891-923. 被引量:1
  • 9Hoppe H,DeRose T,Duchamp T,et al.Surface Reconstruction fromUnorganized Points[J].Computer Graphics,1992,26(2):71-78. 被引量:1
  • 10Kobbelt L P, Botsch M, Schwanecke U, et al. Feature sensitive surface extraction from volume data [A]. In:Computer Graphics Proceedings, Annual Conference Series, ACM, SIGGRAPH, Los Angeles, CA, 2001. 57~66 被引量:1

共引文献75

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部