摘要
Previous studies showed that signifi cant increases in elongation in Mg–Ce alloys due to the Ce addition and the solute drag eff ect by Ce addition were ascribed to the non-basal dislocation slip activating and the texture altering. The microstructure evolution and deformation models of extruded Mg-0.5 wt%Ce alloy rods under uniaxial tension have been studied using in situ electron backscatter diff raction. The basal and non-basal slips were characterized by using slip line trace analysis. The results provide evidence for that pyramidal slip activated during deformation, besides basal slip and extension twinning, which contributes to the texture weakening and ductility increasing in Mg-0.5 wt%Ce alloy.
Previous studies showed that signifi cant increases in elongation in Mg–Ce alloys due to the Ce addition and the solute drag eff ect by Ce addition were ascribed to the non-basal dislocation slip activating and the texture altering. The microstructure evolution and deformation models of extruded Mg-0.5 wt%Ce alloy rods under uniaxial tension have been studied using in situ electron backscatter diff raction. The basal and non-basal slips were characterized by using slip line trace analysis. The results provide evidence for that pyramidal slip activated during deformation, besides basal slip and extension twinning, which contributes to the texture weakening and ductility increasing in Mg-0.5 wt%Ce alloy.
基金
the financial supports of the National Key Research and Development Plan(Grant Nos.2016YFB0301103 and 2016YFB0701201)
the National Natural Science Foundation of China(Grant Nos.51771109 and 51631006)