期刊文献+

基于混合遗传算法的任务驱动分组优化研究 被引量:4

Optimized Research for Task-driven Grouping Based on Hybrid Genetic Algorithm
下载PDF
导出
摘要 智能算法应用到教学领域来实现自动分组具有重要意义。针对网络学习环境下任务驱动教学中如何按最优分组方案进行小组划分的问题,综合考虑了分组问题中学习者之间的特征差异和任务难易程度等影响因素,构建了基于任务驱动分组优化问题的数学模型,提出了基于混合遗传算法的任务驱动分组优化策略。在MATLAB7.0平台上,运用混合遗传算法对任务驱动的分组优化进行了仿真实验。实验结果表明,基于混合遗传算法的任务驱动分组优化是可行且有效的。 Intelligent algorithm that applies to the education field to realize automatic grouping has great significance.In the task-driven teaching under the network learning environment for how to group divided according to the optimal grouping scheme,the factors of the characteristic differences between learners and the degree of task difficulty were considered,a mathematical model based on task-driven grouping optimization problem was built,the strategy of taskdriven grouping optimization based on hybrid genetic algorithm was proposed.We had done an simulation experiment by using hybrid genetic algorithm on MATLAB7.0platform.Experimental results show that the optimization of task-driving grouping based on hybrid genetic algorithm is feasible and effective.
出处 《计算机科学》 CSCD 北大核心 2017年第S1期105-108,共4页 Computer Science
基金 2016年国家社科基金年度项目:移动设备知识传播的情景感知服务机制及运行实证研究(16BTQ084)资助
关键词 协作学习分组 任务驱动 分组优化模型 混合遗传算法 Collaborative learning group Task-driven Grouping optimization model Hybrid genetic algorithm
  • 相关文献

参考文献5

二级参考文献36

  • 1敖友云,迟洪钦.基于遗传算法的多目标0-1背包问题优化模型[J].计算机工程与应用,2006,42(25):44-45. 被引量:6
  • 2周海乾,傅锡增.大班教学的合作学习组织方式探索[J].教学与管理(中学版),2002(7):48-49. 被引量:15
  • 3霍佳震,陈瑶,周欣.汽车制造企业入厂物流模式设计与仿真[J].汽车工程,2007,29(4):355-359. 被引量:21
  • 4[1]Goldberg D E. Genetic Algorithms in Search,Optimization and Machine Learning[J],Addison Wesley,Reading,MA,1989. 被引量:1
  • 5[2]Khuri S,Back T, Heitkotter J. An Evolutionary Approach to Combinational Optionzation Problems[J]. Proc. of 22nd Annual Computer Science Conference, 66-73, New York, Phoenix AZ, ACM Press. 被引量:1
  • 6[3]Chen Guo - liang, Wang Xu - hua, et. al. Genetic Algorithms and its Applications [J], Beijing, People's Posts and Telecommunication Press, 1996(in Chinese). 被引量:1
  • 7[4]Bridges G L,Goldberg D E. An analysis of Reproduction and Crossover in a Binary -coded Genetic Algorithm[J].Genetic Algorithms and Their Applications:Proceeding of the Second International Conference on Genetic Algorithms[J]. 1987.9~13. 被引量:1
  • 8Gen M,Cheng R.遗传算法与工程优化[M].予歆杰,周根贵译.北京:清华大学出版社,2004:83-86. 被引量:2
  • 9Lee C. Vehicle routing and inventory control for in- bound logistics[D]. Ann Arbor, USA: University of Michigan, 2001. 被引量:1
  • 10Chuah K H, Yingling J C. Routing for a just-in-time supply pickup and delivery[J]. System. Transporta- tion Science. Baltimore, 2005,39(3): 328-339. 被引量:1

共引文献52

同被引文献45

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部