摘要
采用模糊熵函数对图象象素分类作出整体最优分类评价,实现了区域分割.利用矩及其函数做为各区域的特征表达,构成以区域为基元的符号特征集并描述图象内容。根据立体图象对间的几何关系,解出各区域(基元)的相对三维坐标。与象索匹配相比较,它可以获得较高精度的三维信息和可描述的景物信息.通过获取不同时空的各区域(基元)三维信息,确定了它们的空间运动状态。联系这些状态,构造出景物中物体间的空间关系和近似模型,实现了对景物的3-D识别和描述。
This paper presents a method that provides an applicable device to obtain 3-Dinformation for a scene and to make 3-D description of the scene objects.It makes use of fuzzy entropy in a whole image as (?)lustering evaluation functionto obtain better region segmentation.We use moments and functions as the characteristies of the regions and form asymbol set to represent the contents of the image.The 3-D coordinates of each ele-ment(region)will be calculated through geometric relationships between stereoimage couple.According to these 3-D information of the elements in different space and time,one can get their 3-D moving statements by connecting 3-D statements of the ele-ments,we bring about 3-D detection and description.
出处
《机器人》
EI
1988年第4期30-38,共9页
Robot
关键词
模糊熵
区域分割
计算机视觉
矩
三维信息
立体图象
fuzzy entropy
region segmentation
computer vision
moment
three-dimensional information
stereo image