期刊文献+

基于量子粒子群优化算法的信号盲源分离

Blind source separation based on quantum particle swarm optimization algorithm
下载PDF
导出
摘要 为了获得更优的盲源分离效果,针对标准粒子群算法难以求解独立分量分析算法目标函数的难题,提出了一种基于量子粒子群算法的盲源分离方法。首先建立混合信号非线性盲源分离的数学模型,然后将量子粒子群算法引入到独立分量分析算法目标函数求解过程中,以确定最优分离矩阵,最后对其性能进行验证性实验。实验结果表明,本文方法加快了混合信号盲源分离速度,获得了更加理想的混合信号盲源分离效果。 In order to obtain a better blind source separation effect,the standard particle swarm algorithm is difficulty to solve target function of independent component analysis algorithm,so s paper put forward a method of blind source separation based on quantum particle swarm algorithm. After the establishment of mathematical model of nonlinear blind source separation of mixed signals,and then the quantum particle swarm algorithm is introduced to solve the objective function of independent component analysis algorithm to determine the optimal separation matrix,finally the performance is tested by experiments. The experimental results show that the proposed method speeds up separation speed of blind source,and obtains more ideal blind source separation effect.
作者 薛瑞 李艳丽
机构地区 信阳师范学院
出处 《激光杂志》 北大核心 2015年第7期106-108,共3页 Laser Journal
基金 河南省2014年基础与前沿技术研究计划项目(142300410393)
关键词 盲源分离 量子粒子群算法 独立分量分析 目标函数 blind source separation quantum particle swarm optimization algorithm independent component analysis objection function
  • 相关文献

参考文献9

  • 1马建仓,牛奕龙,陈海洋.盲信号处理[M]国防工业出版社,2006. 被引量:3
  • 2杨福生,洪波著..独立分量分析的原理与应用[M].北京:清华大学出版社,2006:205.
  • 3Kun Zhang,Lai-Wan Chan.Convolutive blind source separation by efficient blind deconvolution and minimal filter distortion[J]. Neurocomputing . 2010 (13) 被引量:1
  • 4Sergio Bermejo.Finite sample effects of the fast ICA algorithm[J]. Neurocomputing . 2007 (1) 被引量:1
  • 5Kun Zhang,Lai-Wan Chan.  Convolutive blind source separation by efficient blind deconvolution and minimal filter distortion[J]. Neurocomputing . 2010 (13) 被引量:1
  • 6Bertrand Rivet,Laurent Girin,Christian Jutten.Mixing Audiovisual Speech Processing and Blind Source Separation for the Extraction of Speech Signals From Convolutive Mixtures. Audio, Speech, and Language Processing, IEEE Transactions on . 2007 被引量:1
  • 7Ainhoren, Y.,Engelberg, S.,Friedman, S.The cocktail party problem [instrumentation notes]. Instrumentation & Measurement Magazine, IEEE . 2008 被引量:1
  • 8NAKAJIMA H,NAKADAI K,HASEGAWA Y,et al.Adaptive step-sizeparameter control for real-world blind source separation. Proc.IEEE International Conference on Acoustics,Speech and Signal Process-ing,2008 . 2008 被引量:1
  • 9Francisco Messinay,Bruno Cernuschi-Frías.Robust Parallel Fast-ICA Algorithms Using Batch and Adaptive MMSE Estimators. 13th Argentine Symposium on Technology . 2012 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部