期刊文献+

Multi-angle Face Detection Based on DP-Adaboost 被引量:2

Multi-angle Face Detection Based on DP-Adaboost
原文传递
导出
摘要 Although important progresses have been already made in face detection,many false faces can be found in detection results and false detection rate is influenced by some factors,such as rotation and tilt of human face,complicated background,illumination,scale,cloak and hairstyle.This paper proposes a new method called DP-Adaboost algorithm to detect multi-angle human face and improve the correct detection rate.An improved Adaboost algorithm with the fusion of frontal face classifier and a profile face classifier is used to detect the multi-angle face.An improved horizontal differential projection algorithm is put forward to remove those non-face images among the preliminary detection results from the improved Adaboost algorithm.Experiment results show that compared with the classical Adaboost algorithm with a frontal face classifier,the textual DP-Adaboost algorithm can reduce false rate significantly and improve hit rate in multi-angle face detection. Although important progresses have been already made in face detection,many false faces can be found in detection results and false detection rate is influenced by some factors,such as rotation and tilt of human face,complicated background,illumination,scale,cloak and hairstyle.This paper proposes a new method called DP-Adaboost algorithm to detect multi-angle human face and improve the correct detection rate.An improved Adaboost algorithm with the fusion of frontal face classifier and a profile face classifier is used to detect the multi-angle face.An improved horizontal differential projection algorithm is put forward to remove those non-face images among the preliminary detection results from the improved Adaboost algorithm.Experiment results show that compared with the classical Adaboost algorithm with a frontal face classifier,the textual DP-Adaboost algorithm can reduce false rate significantly and improve hit rate in multi-angle face detection.
出处 《International Journal of Automation and computing》 EI CSCD 2015年第4期421-431,共11页 国际自动化与计算杂志(英文版)
关键词 Multi-angle face detection ADABOOST classifier fusion improved horizontal differential projection false face. Multi-angle face detection Adaboost classifier fusion improved horizontal differential projection false face.
  • 相关文献

参考文献7

二级参考文献67

  • 1Liu, Fei, Liu, Xin, Zhang, Bin, Bai, Jing.Extraction of Target Fluorescence Signal from In Vivo Background Signal Using Image Subtraction Algorithm[J].International Journal of Automation and computing,2012,9(3):232-236. 被引量:4
  • 2Liu, Lei, Yang, Feng, Zhang, Peng, Wu, Jing-Yi, Hu, Liang.SVM-based Ontology Matching Approach[J].International Journal of Automation and computing,2012,9(3):306-314. 被引量:3
  • 3YANG M H,KRIEGMAN D,AHUJA N.Detecting faces in images:a survey[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(1):34-58. 被引量:1
  • 4YANG Jie,LU W,WAIBEL A.Skin color modeling and adaptation[C]//Proc of the 3rd Asian Conference on Computer Vision.London:Springer-Verlag,1998:687-694. 被引量:1
  • 5PHUNG S L,BOUZERDOUM A,CHAI D.A novel skin color model in YCrCb color space and its application to human face detection[C]//Proc of IEEE International Conference on Image Processing.New York:[s.n.],2002:289-292. 被引量:1
  • 6LEE J Y,YOO S I.An elliptical boundary model for skin color detection[C]//Proc of the International Conference on Imaging Science,Systems and Technology.Las Vegas:[s.n.],2002:579-584. 被引量:1
  • 7HSU R L,MOTTABEB M A,JAIN A K.Face detection in color image[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(5):696-706. 被引量:1
  • 8FREUND Y,SCHAPIRE R E.Experiments with a new boosting algorithm[C]//Proc of the 13th International Conference on Machine Learning.San Francisco:[s.n.],1996:148-156. 被引量:1
  • 9VIOLA P,JONES M.Rapid object detection using a boosted cascade of simple features[C]//Proc of IEEE Conference Computer Vision and Pattern Recognition.Kauai:[s.n.],2001:511-518. 被引量:1
  • 10LIENHART R,MAYDT J.An extended set of Haar-like features for rapid object detection[C]//Proc of IEEE International Conference on Image Processing.New York:[s.n.],2002:900-903. 被引量:1

共引文献23

同被引文献13

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部