期刊文献+

An Isolation Principle Based Distributed Anomaly Detection Method in Wireless Sensor Networks 被引量:3

An Isolation Principle Based Distributed Anomaly Detection Method in Wireless Sensor Networks
原文传递
导出
摘要 Anomaly detection plays an important role in ensuring the data quality in wireless sensor networks(WSNs).The main objective of the paper is to design a light-weight and distributed algorithm to detect the data collected from WSNs effectively.This is achieved by proposing a distributed anomaly detection algorithm based on ensemble isolation principle.The new method offers distinctive advantages over the existing methods.Firstly,it does not require any distance or density measurement,which reduces computational burdens significantly.Secondly,considering the spatial correlation characteristic of node deployment in WSNs,local sub-detector is built in each sensor node,which is broadcasted simultaneously to neighbor sensor nodes.A global detector model is then constructed by using the local detector model and the neighbor detector model,which possesses a distributed nature and decreases communication burden.The experiment results on the labeled dataset confirm the effectiveness of the proposed method. Anomaly detection plays an important role in ensuring the data quality in wireless sensor networks(WSNs).The main objective of the paper is to design a light-weight and distributed algorithm to detect the data collected from WSNs effectively.This is achieved by proposing a distributed anomaly detection algorithm based on ensemble isolation principle.The new method offers distinctive advantages over the existing methods.Firstly,it does not require any distance or density measurement,which reduces computational burdens significantly.Secondly,considering the spatial correlation characteristic of node deployment in WSNs,local sub-detector is built in each sensor node,which is broadcasted simultaneously to neighbor sensor nodes.A global detector model is then constructed by using the local detector model and the neighbor detector model,which possesses a distributed nature and decreases communication burden.The experiment results on the labeled dataset confirm the effectiveness of the proposed method.
出处 《International Journal of Automation and computing》 EI CSCD 2015年第4期402-412,共11页 国际自动化与计算杂志(英文版)
基金 supported by the National High Technology Research and Development Program of China(No.2011AA040103-7) the National Key Scientific Instrument and Equipment Development Project(No.2012YQ15008703) the Zhejiang Provincial Natural Science Foundation of China(No.LY13F020015) National Science Foundation of China(No.61104089) Science and Technology Commission of Shanghai Municipality(No.11JC1404000) Shanghai Rising-Star Program(No.13QA1401600)
关键词 Distributed anomaly detection isolation principle light-weight method ensemble learning wireless sensor networks(WSNs) Distributed anomaly detection isolation principle light-weight method ensemble learning wireless sensor networks(WSNs)
  • 相关文献

参考文献10

  • 1Li-Jie Zhao 1,2 Tian-You Chai 2 De-Cheng Yuan 1 1 College of Information Engineering,Shenyang University of Chemical Technology,Shenyang 110042,China 2 State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110189,China.Selective Ensemble Extreme Learning Machine Modeling of Effluent Quality in Wastewater Treatment Plants[J].International Journal of Automation and computing,2012,9(6):627-633. 被引量:9
  • 2Wei-Guo Yi,Jing Duan,Ming-Yu Lu.Double-layer Bayesian Classifier Ensembles Based on Frequent Itemsets[J].International Journal of Automation and computing,2012,9(2):215-220. 被引量:3
  • 3Y. Zhang,N.A.S. Hamm,N. Meratnia,A. Stein,M. van de Voort,P.J.M. Havinga.Statistics-based outlier detection for wireless sensor networks[J]. International Journal of Geographical Information Science . 2012 (8) 被引量:1
  • 4Fei Tony Liu,Kai Ming Ting,Zhi-Hua Zhou.Isolation-Based Anomaly Detection[J]. ACM Transactions on Knowledge Discovery from Data (TKDD) . 2012 (1) 被引量:1
  • 5Miao Xie,Song Han,Biming Tian,Sazia Parvin.Anomaly detection in wireless sensor networks: A survey[J]. Journal of Network and Computer Applications . 2011 (4) 被引量:1
  • 6Jen-Yan Huang,I-En Liao,Yu-Fang Chung,Kuen-Tzung Chen.Shielding wireless sensor network using Markovian intrusion detection system with attack pattern mining[J]. Information Sciences . 2011 被引量:2
  • 7Varun Chandola,Arindam Banerjee,Vipin Kumar.Anomaly detection[J]. ACM Computing Surveys (CSUR) . 2009 (3) 被引量:4
  • 8Victoria J. Hodge,Jim Austin.A Survey of Outlier Detection Methodologies[J]. Artificial Intelligence Review . 2004 (2) 被引量:1
  • 9I.F. Akyildiz,W. Su,Y. Sankarasubramaniam,E. Cayirci.Wireless sensor networks: a survey[J]. Computer Networks . 2002 (4) 被引量:10
  • 10Markus M. Breunig,Hans-Peter Kriegel,Raymond T. Ng,J?rg Sander.LOF[J]. ACM SIGMOD Record . 2000 (2) 被引量:2

二级参考文献19

  • 1眭俊明,姜远,周志华.基于频繁项集挖掘的贝叶斯分类算法[J].计算机研究与发展,2007,44(8):1293-1300. 被引量:12
  • 2Zhi-Hua Zhou,Jianxin Wu,Wei Tang.Ensembling neural networks: many could be better than all. Artificial Intelligence . 2002 被引量:1
  • 3Houck CR,Joines JA,Kay MG.A Genetic Algorithm for Function Optimization: A Matlab Implementation. North Carolina State University, Report no.:NCSU_IE_TR_95_09 . 1995 被引量:1
  • 4Jacobs RA,Jordan MI,Nowlan SJ,et al.Adaptive mixtures of local experts. Neural Computation . 1991 被引量:1
  • 5Hansen L K,Salamon P.Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1990 被引量:1
  • 6Lee D S,Vanrolleghem P A.Monitoring of a sequencing batch reactor using adaptive multiblock principal component analysis. Biotechnology and Bioengineering . 2003 被引量:1
  • 7Lee D S,Jeon C O,Park J M.Hybrid Neural Network Modeling of a Full-Scale Industrial Wastewater Treatment Process. Biotechnology and Bioengineering . 2002 被引量:1
  • 8Lan Y,Soh Y C,Huang G B.Ensemble of online sequential extreme learning machine. Neurocomputing . 2009 被引量:1
  • 9Petr Kadlec.On robust and adaptive soft sensors. . 2009 被引量:1
  • 10E.Belia,Y.Amerlinck,L.Benedetti,B.Johnson,G.Sin,P.A.Vanrolleghem,K.V.Gernaey,S.Gillot,M.B.Neu-mann,L.Rieger,A.Shaw,K.Villez.Wastewater treat-ment modelling:Dealing with uncertainties. Water Science and Technology . 2009 被引量:1

共引文献23

同被引文献7

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部