期刊文献+

一种基于图像恢复的水下零件在线测量方法

Online Underwater Visual Measurement Method Based on Image Restoration
原文传递
导出
摘要 水下自动化操作处理使用机器视觉进行测量时,由于水面的折射、波动等会导致扰动出现,严重影响图像检测的质量。提出了一种基于图像复原的在线视觉测量算法。该方法基于一种图像质量评价时域高通滤波与空间解卷积滤波的水下图像复原算法。首先将获取的原始序列图像,通过基于图像质量评价的高通滤波器;然后进行时域均值滤波,接着通过高斯维纳空间解卷积滤波;最后通过标定的水下摄像机参数模型,求解零件孔距。实验结果表面,水下图像复原方法可有效去除水下扰动对图像的干扰,检测方法具有较高的检测精度,求解出的零件孔距平均误差小于0.1 mm。 When automatic operation processing using machine vision for measuring under water,disturbance effect caused by refraction and fluctuation of water surface sensitively degrades the video quality,and affecting the detection results. A new online visual measurement method is presented in this paper. The method is based on an image restoration algorithm. First,a temporal high pass filter is used to get a stabilized but blurry video,which using image quality assessment function. Second,a spatial Gauss-Wiener deconvolution filter is then used to estimate the video which would have been observed without turbulence. Finally,the feature holes’ distance of the part is solved by the calibrated underwater camera model. The experimental results show that the underwater image restoration method can effectively remove the disturbance effect. The average error of feature holes’ distance is less than 0.1 mm.
出处 《机电一体化》 2018年第8期29-33,共5页 Mechatronics
关键词 图像复原 维纳滤波 高斯分布 孔距 image restoration Wiener filter Gaussian distribution holes’distance
  • 相关文献

参考文献2

二级参考文献17

  • 1Murase H. Surface shape reconstruction of a nonrigid transparent object using refraction and motion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (S0162-8828), 1992, 10(10): 1045-1052. 被引量:1
  • 2Morris N, Kutulakos K. Dynamic Refraction Stereo [C]//Tenth IEEE International Conference on Computer Vision, 2005. USA: IEEE Press, 2005, (2): 1573-1580. 被引量:1
  • 3Wang H, Liao M, Zhang Q. Physically Guided Liquid Surface Modeling from Videos [C]//ACM SIGGRAPH. USA: ACM, 2009: 1-11. 被引量:1
  • 4Efros A, Isler V, Shi J, Visontai M. Seeing through water [C]// Advances in Neural Information Processing Systems 17, USA: MIT Press, 2004: 393-400. 被引量:1
  • 5Donate A, Ribeiro E. Improved Reconstruction of Images Distorted by water waves [C]//Intemational Conference on Computer Vision Theory and Applications. USA: Springer, 2006: 228-235. 被引量:1
  • 6Donate A, Dahme G, Ribeiro E. Classification of Textures Distorted by Waterwaves [C]// Proceedings of the 18th International Conference on Pattern Recognition. USA: IEEE Press, 2006: 421-424. 被引量:1
  • 7Tian Y, Narasimhan S. Seeing through water: Image restoration using model-based tracking [C]// IEEE 12th International Conference on Computer Vision, USA: IEEE Press, 2009:2303-2310. 被引量:1
  • 8Oreifej O, Shu G, Pace T, Shah M. A Two-Stage Reconstruction Approach for Seeing Through Water [C]//24th IEEE Conference on Computer Vision and Pattern Recognition. USA: IEEE Press, 2011: 1153-1160. 被引量:1
  • 9Rueckert D, Sonoda L, Hayes C, Hill D, Leach M, Hawkes D.Nonrigid registration using free-form deformations: application to breast MR images [J]. IEEE Transactions on Medical Imaging (S0278-0062), 1999, 18(8): 712-721. 被引量:1
  • 10Tian Y, Narasimhan S. The relationship between water depth and distortion [R]// Carnegie Mellon University Tech Report Robotic Institute, 2009. USA: Carnegie Mellon University, 2009. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部