期刊文献+

船舶平面分段单流水线反应式模糊调度研究 被引量:1

Research on general pipeline reaction fuzzy scheduling of ship plane subsection
下载PDF
导出
摘要 本文针对船舶平面分段流水线调度过程中加工时间和交货期的不确定性,采用模糊化手段进行调度决策。为了应对船舶平面分段生产过程中的急件插入的情况,提出描述船舶平面分段单流水线反应式调度问题的数学模型,以最小化模糊最大完工时间makespan、最大化平均AICD、最大化平均AISS为调度目标,设计了求解模型的一种多目标文化基因算法。基于解的形式采用有效的变异、交叉操作,并嵌入局部搜索算子以增强算法搜索能力。本研究通过makespan和satisfaction两个指标反映算法的有效性,通过甘特图模拟仿真调度过程,为实际船舶平面分段的生产建造提供决策支持。 This study is focused on the uncertainties of processing time and delivery time in the process of hull-level segmented assembly line scheduling,which using fuzzy scheduling data.The study proposes a mathematical model describing the general pipeline reactive scheduling problem for ship plane segmentation,aimed at dealing with the situation of urgent inserts in the production process.In order to minimize the fuzzy makespan,maximize the average AICD and maximize the average AISS,a multi-objective cultural gene algorithm for solving the model is designed.The solution-based form uses effective mutation and crossover operations and embeds local search operators to enhance the algorithm’s search capabilities.This study validates the effectiveness of the algorithm through two indicators,makespan and satisfaction.And simulate simulation scheduling process using Gantt charts to provide decision support for production and construction of actual ship plane sections.
作者 兰宏凯 杨志 柳存根 张水明 LAN Hong-kai;YANG Zhi;LIU Cun-gen;ZHANG Shui-ming(State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Collaborative Innovation Center for Advanced Ship and Deep-sea Exploration,Shanghai Jiaotong University,Shanghai 200240,China)
出处 《舰船科学技术》 北大核心 2019年第15期7-11,共5页 Ship Science and Technology
关键词 反应式调度 文化基因算法 船舶平面分段 reactive scheduling cultural genetic algorithm ship plane segmentation
  • 相关文献

参考文献5

二级参考文献29

  • 1Hou Y C, Chang Y H. A new efficient encoding mode of genetic algorithms for the generalized plant allocation problem[J]. J of Information Science and Engineering, 2004, 20(5): 1019-1034. 被引量:1
  • 2Dai Y S, Xie M, Poh K L. Optimal testing-resource allocation with genetic algorithm for modular software systems[J]. J of Systems and Software, 2003, 66(1): 47-55. 被引量:1
  • 3Balasubramanian A, Levine B, Venkataramani A. DTN routing as a resource allocation problem[J]. ACM Sigcomm Computer Communication Review, 2007, 37(4): 373-384. 被引量:1
  • 4Osman M S, Abo-Sinna M A, Mousa A A. An effective genetic algorithm approach to multi-objective resource allocation problems[J]. Applied Mathematics and Computation, 2005, 163(2): 755-768. 被引量:1
  • 5Lin C M, Gen M. Multiobjective resource allocation problem by multistage decision-based hybrid genetic algorithm[J]. Applied Mathematics and Computation, 2007, 187(2): 574-583. 被引量:1
  • 6Chang Y H, Hou Y C. Dynamic programming decision path encoding of genetic algorithms for production allocation problems[J]. Computers & Industrial Engineering, 2008, 54(1): 53-65. 被引量:1
  • 7Chaharsooghi S K, Meimand Kermani A H. An effective ant colony optimization aigorithm(ACO) for multi-objective resource allocation problem(MORAP)[J]. Applied Mathematics and Computation, 2008, 200(1): 167-177. 被引量:1
  • 8Gong Y, Zhang J, Chung H, et al. An efficient resource allocation scheme using particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2012, 16(6): 801-816. 被引量:1
  • 9Yin P Y, Wang J Y. A particle swarm optimization approach to the nonlinear resource allocation problem[J]. Applied Mathematics and Computation, 2006, 183(1): 232-242. 被引量:1
  • 10Barkat Ullah A S S M, Sarker R, Lokan C. Handling equality constraints with agent-based memetic algorithms[J]. Memetic Computing, 2011, 3(1): 51-72. 被引量:1

共引文献14

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部