期刊文献+

基于前馈补偿解耦的多变量汽温系统预测函数控制 被引量:28

PREDICTIVE FUNCTIONAL CONTROL FOR MULTIPLE VARIABLE SYSTEM BASED ON FEED-FORWARD DECOUPLING COMPENSATION
下载PDF
导出
摘要 针对过程通道可用一阶加纯滞后模型等价描述的多输入多输出系统,提出了基于前馈补偿解耦设计思想的多变量预测函数控制,首先将系统分解为多个多输入单输出系统,在各系统中分别将其它输入量暂视为一种可测干扰,并用预测函数控制原理设计控制器,通过求解多元一 次方程组,实现了多变量系统的预测函数控制设计。采用该方法对国产200MW火电机组带汽—汽换热器的多变量强耦合再热汽温系统进行了控制系统设计和仿真研究,计算机仿真证实了其有效性,达到了动态近似解耦、静态完全解耦和无静差跟踪,各种对象和模型失配情况下的仿真结果显示了该算法较强的鲁棒性和抗干扰能力。因为该方法是基于简化的模型,所推导出的控制算法简单,运算量小,易于工程实现,具有很高的实际应用价值。 In view of multi-input multi-output (MIMO) system that can be equivalently described by first order plus pure time-delay in each process channel, multi-variable PFC is presented based on feed-forward compensation decoupling technique. The new method is designed by decomposing the MIMO system into multi-input single-output (MISO) systems, in each MISO system, the other inputs are seemed as measurable disturbances during control strategy is being deduced, and PFC principle is used to design controllers, PFC decoupling control is realized by solving equivalence group. The presented control strategy and its algorithm is applied to a multi-variable steam temperature process with steam-steam heat exchanger in a 200MW unit, computer simulation results show that the control strategy is effective, the almost dynamic decoupling and completely static decoupling function are obtained, and the closed loop system has zero static error, many mismatches between the controlled plant and the predictive model demonstrate the strong robust ability and disturbances rejection. The control algorithm has the merit of simple, less calculation load, and is easy to be realized in Distributed Control System (DCS), so it has hopeful application prospect.
出处 《中国电机工程学报》 EI CSCD 北大核心 2003年第2期158-162,共5页 Proceedings of the CSEE
关键词 前馈补偿解耦 多变量汽温系统 预测函数控制 200MW火电机组 解耦控制 计算机仿真 predictive functional control decoupling control feed-forward compensation steam temperature control system
  • 相关文献

参考文献1

二级参考文献2

共引文献14

同被引文献202

引证文献28

二级引证文献247

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部