期刊文献+

机器人LFT变增益H_∞控制 被引量:2

LFT gain scheduled H_∞ control for a robotic manipulator
下载PDF
导出
摘要 针对平面两关节直接驱动机器人 ,基于LMI技术提出一种设计能保证在整个运动范围内始终具有很好动态性能的LFT变增益H∞ 控制器的新方法 .将机器人系统转化为以两关节夹角余弦值为变参数的LPV模型并表示为关于变参数的LFT结构 ,利用变参数的测量值设计具有相同LFT结构的LPVH∞ 控制器 ,将此控制器的设计等价为以变参数为不确定项的LTI鲁棒控制器的设计并给出控制器可解的LMIs条件 ,然后归纳出获得控制器的求解方法 .此控制器既克服了传统变增益控制器的缺陷 ,又利用变参数的测量值降低了控制器设计的保守性 .实验结果验证了此控制器的有效性和先进性 . A new approach to design an LFT gain scheduled H ∞ controller guaranteeing good dynamic performance in the whole operation range for a planar two-joint direct drive robotic manipulator was presented. The robot system was translated into an LPV (linear parameter varying) model taking the cosine of joint between two joints as the varying parameter. This LPV model was expressed as LFT structure about the varying parameter. Using the measured value of the varying parameter, the LPV H ∞ controller was designed with the same LFT structure. The controller design was equivalent to the robust LTI controller design taking the varying parameter as uncertainty term. The solvable LMIs (linear matrix inequalities) condition of the designed controller was given and the solved method to obtain the controller was induced. The designed controller not only overcomes the limitation of the conventional gain scheduled controller, but also reduces the conservation via the measured varying parameter. Experiment results prove the effectiveness and advancement of the designed controller.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2002年第5期713-719,共7页 Control Theory & Applications
关键词 机器人 LFT 变增益H∞控制 鲁棒控制器 LPV模型 robot LFT(linear fractional trasformation) gain scheduling H ∞ control LMI(linear matrix inequality)
  • 相关文献

参考文献11

  • 1Apkarian P, Biannic J. Gain scheduled control of missile via linear matrix inequalities [ J ]. J. of Guidance, Control and Dynamics,1995, 18(3): 532-538 被引量:1
  • 2Apkarian P, Gahinet P, Becker G. Self-scheduled H∞ control of linear parameter- varying systems: a design example [J]. Automatic a,1995, 31(9): 1251 - 1261 被引量:1
  • 3Doyle J C, Stein G. Multivariable feedback design: concepts for a classical/modem synthesis [J]. IEEE Trans. Automatic Control,1981, 26(1): 4-16 被引量:1
  • 4Apkarian P, A dams R J. Advanced gain-scheduling techniques for uncertain systems [J]. IEEE Trans. on Control System Technology,1997, 6(1): 21-32 被引量:1
  • 5Shamma J S, Athans M. Analysis of nonlinear gain scheduled control systems [J]. IEEE Trans. Automatic Control, 1990, 35(8): 898 -907 被引量:1
  • 6Shamma J S, Athans M. Gain scheduling: potential hazards and possible remedies [J]. IEEE Control System Magazine, 1992, 12(3):101 - 107 被引量:1
  • 7Jiang J. Optimal gain scheduling controller for a diesel engine [J].IEEE Control System Magazine, 1994, 14(4): 42 - 48 被引量:1
  • 8Yu Zhongwei, Chen Huitang. Friction adaptive compensation scheme basedon sliding-mode observer [J]. Robot, 1999, 21(7): 562-568 被引量:1
  • 9Apkarian P. Gain scheduling via linear fractional transformations [J]. Systems&Control Letters, 1994,22(2): 79-92 被引量:1
  • 10GahinetP, ApkarianP. A linear matrix inequality approach to control [J].J. of Robust and Nonlinear Control, 1994,4(2): 421 -448 被引量:1

同被引文献25

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部