摘要
研究第二类优美嵌入的问题,得到了必要条件和在文献[5]中所期待的一些重要结果。
when n=C_N^2, N≠K^2 or k^2+2 (k=0, 1,... ), how can one find a maximal subset {a_1, a_2, ..., a_N} of vertices in the hypercube Q_(n+1) (i=1,2, ...) such that all the (Hamming) distances d(a_1, a,_m)(1≠m) are different, where i is the smallest integer of all the hypercubes satisfying the above-mentioned prgperties. This problem is called the second kind of the problem of Graceful immersion. The necessary condition for the existence of the problem and some other valuable results (for example, N=19, n=171, i=3)called for in Ref. [5] are here obtained
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
1992年第4期422-428,共7页
Journal of University of Electronic Science and Technology of China
关键词
超立方体
美嵌入
余图
矩阵
hypercube
second kind of graceful immersion
cocycle
matrix ,