期刊文献+

物理细胞自动机与岩石弹-脆-塑性性质的细观机制研究 被引量:4

Research on physical cellular automata and microscopical mechanism of elasticity-brittleness-plasticity of rock
下载PDF
导出
摘要 基于能量守恒定律和岩石的基本力学性质,进一步发展了由作者提出的一种用于模拟岩石非线性破坏演化的新方法—物理细胞自动机(PCA)模型。该模型通过岩石内部(或细观)基元(或细胞)间简单的随机相互作用的综合结果来反映岩石系统整体的稳定宏观力学现象。利用PCA模型,研究了形成不同岩石本构关系的本质影响因素,揭示了岩石弹-脆-塑性性质的细观机制,为进一步认知岩石等非均质材料的力学性质提供了一种新的理论方法。同时,其研究思路和结论也可为微观和细观力学的数值模拟方法及新型复合材料的设计提供重要的借鉴。 Based on the energy conservation law and mechanical properties of rock, the physical cellular automat (PCA), a new model set up by authors to simulate the nonlinear evolution of rock failure, is developed; and the PCA model can be used to simulate the macroscopic mechanical behaviors of rock system caused by the compositive results of the simple reciprocity among the partial cells in the rock. Entitative influence on the constitutive relation of rock is studied by way of PCA; and micro-mechanism of elasticity, brittleness and plasticity of rock is profoundly revealed. The ideas and conclusions of the paper can be used as an important reference to numerical simulation of meso-mechanics and design of new composite materials.
出处 《岩土力学》 EI CAS CSCD 北大核心 2002年第6期678-682,共5页 Rock and Soil Mechanics
基金 国家自然科学基金项目(50179034) 中国科学院力学研究所非线性力学国家重点实验室(LNM)开放研究课题基金资助的课题.
关键词 物理细胞自动机 岩石的弹-脆-塑性 细观机制 Brittleness Computer simulation Elasticity Energy conservation Mechanical properties Plasticity
  • 相关文献

参考文献23

  • 1Yu S W , Feng X Q. Micro-mechanical damage model for brittle materials with residual strain [A]. Proceedings of the Ninth International Conference on Fracture[C]. 1997, (2) : 1 167-1 174. 被引量:1
  • 2李宗全,陈湘明编著..材料结构与性能[M].杭州:浙江大学出版社,2001:182.
  • 3Von Neumann J. Theory of self-reproducing automata[M]. University of Illinois Press. 1996. 被引量:1
  • 4Stephen Wolfram. Statistical mechanics of cellular automata[J]. Reviews of modern physics, 1983, 55 (3): 601-643. 被引量:1
  • 5Peter Grassberger. Long-range effects in an elementary cellular automata[J]. Journal of Statistical Physics, 1986, 45 (172): 27-39. 被引量:1
  • 6Hardy J, Pomeau Y, de Pazzis O. Time evolution of a two-dimensional model system[J]. J. Math. Phys, 1973,14 : 1 746-1 759. 被引量:1
  • 7Hasslacher B. Discrete fluids[J]. Ls Alamos Science Special Issue, 1987, 175-217. 被引量:1
  • 8d'Humières D, Lallemand P, Frisch U. Lattice gas methods for 3D hydrodynamics[J]. Europhys. Lett., 1986, 2: 291-297. 被引量:1
  • 9Hiizu Nakanishi. Cellular-automata of earthquakes with deterministic dynamics[J]. Physical Review (A), 1990, 41(12): 7 086-7 089. 被引量:1
  • 10Bak P, Chao T. Earthquakes as a self-organized critical phenomenon[J]. J. Geophysical. Research, 1989, 94 (1311): 15 635-15 637. 被引量:1

二级参考文献25

共引文献219

同被引文献36

引证文献4

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部