摘要
首先依照复数概念与其几何意义对边角控制网、附合导线、坐标转换等测量平差问题进行研究,概括出二维平面上复函型误差方程一般式.然后依据复数域最小二乘法原理,对复函型误差方程进行平差分析.分析过程中克服复数代数化处理的繁琐性弊端,运用矩阵不等式,向量运算等数学工具,得到复数域经典平差模型,拓充经典平差理论.最后通过算例比较,验证复数域经典平差模型的正确性,并分析其应用的合理性.
Firstly, on the basis of study on triangulateration control network adjustment,connecting traverse adjustment,forward intersection and so on,which are based on complex concept and geometry in the paper,general formula of complex error equation of plane survey is proposed.Then adjustment analysis is tried to do according to the least squares theory.It overcomes complicated computation and lengthiness formulas of traditional algebraization.The matrix inequalities and vector operation are used in order to build the complex least squares adjustment model and perfect the surveying adjustment system.Lastly,a comparison of two ways of the example indicates the correctness and effective of this method.
作者
陈军红
CHEN Junhong(School of Civil Engineering,Xinjiang Institute of Engineering,Wulumuqi 830091,China)
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第2期181-188,共8页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金项目(61162019)
关键词
复数域
最小二乘法
误差方程
精度评定
平面控制网平差
complex
least squares adjustment
error equation
precision
horizontal control network adjustment