期刊文献+

深度卷积神经网络的判别性人脸识别算法 被引量:11

Discriminative face recognition algorithm based on deep convolutional neural network
原文传递
导出
摘要 针对Softmax(柔性最大值)损失对特征只有可分性的不足,提出一种基于深度卷积神经网络的判别性人脸识别算法.该算法首先根据Softmax损失特征分布,在特征和权重向量间施加一个类内余弦相似性损失,使类内更加紧凑,类间尽可能分离;然后在Softmax损失基础上通过归一化特征来更好地模拟低质量人脸图像,并通过归一化权重来减轻类别不平衡,使与测试时的余弦相似性度量一致;最后联合归一化的Softmax损失和类内余弦相似性损失在预训练模型上进行微调.该算法在人脸识别基准测试集LFW(户外人脸标记)和YTF(You Tube人脸数据库)上分别取得了98.72%和93.38%的识别率,实验结果表明:在大规模人脸身份识别中,该算法提高了特征的判别性,增强了模型的泛化能力,能有效提高人脸识别率. Aiming at the shortcoming of only separability of Softmax(flexible maximum)loss for feature,a discriminative face recognition algorithm based on deep convolutional neural network was proposed.Firstly,according to Softmax loss feature distribution,an intra-class cosine similarity loss was applied between feature and weight vector to make the intra-class more compact and the inter-class separate as much as possible.Then,on the basis of Softmax loss,the normalized features was used to better simulate the low-quality face image,and the normalized weights was used to mitigate the classes imbalance,which was consistent with the cosine similarity measure during the test.Finally,combined normalized Softmax loss and intra-class cosine similarity loss were fine-tuned on the pre-training model.The proposed algorithm achieved 98.72%and 93.38%recognition rates on the face recognition benchmark test set LFW(labeled faces in the wild)and YTF(YouTube face database),respectively.Experimental results show that the proposed algorithm improves the discrimination of features,enhances the generalization ability of the model,and can effectively improve the face recognition rate in large-scale face recognition.
作者 任克强 胡慧 REN Keqiang;HU Hui(School of Information Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi China)
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第10期127-132,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61501210)
关键词 人脸识别 深度卷积神经网络 Softmax损失 类内余弦相似性损失 归一化 face recognition deep convolutional neural network Softmax loss intra-class cosine similarity loss normalization
  • 相关文献

参考文献1

二级参考文献8

  • 1Lucey P,Cohn J F,Kanade T, et al.The Extended Cohn-Kanade Dataset (CK+):A complete dataset for action unit and emotion-specified expression. CVPR . 2010 被引量:1
  • 2Dahl G E,Sainath T N,Hinton G E.Improving deep neural networks for LVCSR using rectified linear units and dropout. IEEE International Conference on Acoustics,Speech and Signal Processing . 2013 被引量:1
  • 3M. Suwa,N. Sugie,K. Fujimora.A preliminary note on pattern recognition of human emotional expression. International Joint Conference on Pattern Recognition . 1978 被引量:1
  • 4Ekman P,Friesen WV.Constants across cultures in the face and emotion. Journal of Personality . 1971 被引量:1
  • 5Kai, Sun,Junqing, Yu,Yue, Huang,Xiaoqiang, Hu.An improved valence-arousal emotion space for video affective content representation and recognition. Proceedings 2009 IEEE International Conference on Multimedia and Expo, ICME 2009 . 2009 被引量:1
  • 6Goodfellow I J,Erhan D,Carrier P L,et al.Challenges in representation learning:a report on three machine learning contests. Neural Information Processing . 2013 被引量:1
  • 7Movellan J R.The MPLab GENKI database,GENKI-4K subset. http:∥mplab.ucsd-edu . 2015 被引量:1
  • 8Hinton G E,Srivastava N.Improving neural networks by preventing co-adaptation of feature detectors. http:∥arxiv.org/abs/1207.0580 . 2015 被引量:1

共引文献14

同被引文献81

引证文献11

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部