期刊文献+

基于肤色模型与Adaboost算法的多视角人脸检测 被引量:3

Multi-view face detection method based on skin-color model and Adaboost algorithm
原文传递
导出
摘要 提出了一种基于椭圆肤色模型与可控风险敏感型Adaboost(CCS-Adaboost)算法的多视角人脸检测方法.在人脸检测的离线训练部分,该方法使用Haar-like特征和CCS-Adaboost算法训练样本.CCS-Adaboost在最小化分类错误率的同时能够最小化样本的误分类风险,从而它能够提高分类准确性.在实时检测部分,首先通过使用YCbCr颜色空间的椭圆模型快速检测出可能的人脸区域,然后通过基于CCS-Adaboost的多视角人脸检测器检测人脸.多视角人脸检测器中级联分类器的前四层构成姿态预估部分,如果样本未通过级联检测器的前四层,那么该样本被确定为一个非人脸样本.实验证明该检测器可以有效和准确地检测多视角人脸. A multi-view face detection method based on elliptic skin-color model and controlled costsensitive Adaboost(CCS-Adaboost)was proposed.In the off-line training part of face detection,samples were trained by using Haar-like features and CCS-Adaboost algorithm.CCS-Adaboost could minimize the total misclassification cost while minimizing the classification error rate,and could improve the classify accuracy of the samples near the classification boundary.In the on-line detection part,the possible face region could be fast detected by skin color detector in the YCbCrcolor space firstly.Then multi-view face detector based on CCS-Adaboost was used to detect face in skin-color region.The multi-view face detector constructed pose pre-estimation by the front four layers of each cascade-type classifier without training alone.If the sample was abandoned in the previous 4layers of the entire cascade-type detectors,the sample was identified as a non-face sample.The experiments demonstrate that the proposed detector can effectively and accurately detect the multi-view faces.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第S1期271-275,共5页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
关键词 人脸检测 多视角 肤色模型 可控风险敏感型Adaboost 姿态预估 face detection multi-view skin-color model controlled cost-sensitive Adaboost pose pre-estimation
  • 相关文献

参考文献9

  • 1Yang J,Lu W,Waibel A.Skin-color modeling and adaptation. . 1997 被引量:1
  • 2Meng Fengbo,Zhang Xinrong,Li Xuewei.A new skin segmentation algorithm based on color persistence. Computers in Engineering . 2007 被引量:1
  • 3Rowley HA,Baluja S,Kanade T.Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1998 被引量:2
  • 4Paul Viola,Michael Jones.Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 2001 被引量:4
  • 5Henry A Rowley,Shumeet Baluja,Takeo Kanade.Rotation invariant neural network-based face detection. Proceedings of 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 1998 被引量:1
  • 6Rein-Lien Hsu,Mohamed Abdel-Mottaleb,Anil K Jain.Face Detection in Color Images[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2002 被引量:3
  • 7Li Y,Gong S,Liddell H.Support Vector Regression and Classification based Multi-view Face Detection and Recognition. IEEE International Conference onAutomatic Face and Gesture Recognition . 2000 被引量:1
  • 8Min Zhao,Dihua Sun,Wanmei Fan.Hair-color model and adaptive contour templa-tes based head detection. World Congress on intelligent Control andAutomation WCICA . 2010 被引量:1
  • 9Schapire, R.E,Singer, Y,Singhal, A.Boosting and Rocchio applied to text filtering. Proceedings of SIGIR-98 . 1998 被引量:1

共引文献6

同被引文献26

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部