期刊文献+

Lévy过程驱动的线性二次最优控制问题 被引量:1

Linear Quadratic Optimal Control Problem Driven by Lévy Processes
下载PDF
导出
摘要 讨论了由Teugel鞅和多维独立布朗运动共同驱动的随机微分方程的线性二次最优控制问题,其中Teugel鞅是和Lévy过程相关的一类具有可料表示性的强正规鞅序列.通过凸变分理论建立了最优控制的存在性和唯一性,其次利用对偶技术建立了最优控制的Hamilton随机系统对偶表示,最后利用动态规划原理和Riccati方程,获得了最优控制的状态反馈表示.这里的Hamilton随机系统是由状态方程、对偶方程以及最优性条件构成的Teugel鞅和多维独立布朗运动共同驱动的正倒向随机微分方程,Riccati方程是一个高阶非线性的常微分方程. This paper mainly studies a linear quadratic optimal control problem for the stochastic differential equation driven by Teugels martingale and an independent multi-dimensional Brownian motion.Here Teugels martingales are a family of pairwise strongly orthonormal martingales associated with Lévy processes.Firstly,the existence and uniqueness of optimal control is established by convex variation theory,secondly,the dual characterization of the optimal control is obtained by the stochastic Hamilton system,in the end the state feedback presentation of optimal control is established by the dynamical programming principle and Riccati equation.Here the stochastic Hamilton system is a linear forward-backward stochastic differential equation driven by Teugels martingales and an independent multi-dimensional Brownian motion,consisting of state equation,adjoint equation and the dual presentation of the optimal control.Riccati equation is a highly nonlinear ordinary differential equation.
出处 《湖州师范学院学报》 2016年第8期13-23,共11页 Journal of Huzhou University
基金 浙江省新苗人才计划项目(2015R427023) 湖州师范学院大学生创新创业项目(2015-99)
关键词 随机控制 随机最大值原理 LÉVY过程 Teugels鞅 线性随机微分方程 stochastic control stochastic maximum principle Lévy processes Teugels martingale linear differential equation
  • 相关文献

参考文献16

  • 1David Nualart,Wim Schoutens.Backward stochastic differential equations and Feynman-Kac formula for Lévy processes, with applications in finance. Bernoulli . 2001 被引量:1
  • 2SeidBahlali.Stochastic controls of backward systems. Random Operators and Stochastic Equations . 2010 被引量:1
  • 3Bismut J M.Conjugate convex functions in optimal stochastic control. Journal of Mathematical . 1973 被引量:1
  • 4Ekeland I,Temam R.Convex analysis and variational problems. . 1976 被引量:1
  • 5M. Otmani.Backwark stochastic differnetial equations associated with Lévy processes and partial integro-differential eqiations. Commun Stoch Anal . 2008 被引量:1
  • 6Yong Ren,Xiliang Fan.REFLECTED BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY A LéVY PROCESS. The ANZIAM Journal . 2009 被引量:1
  • 7K. Bahlali,M. Eddahbi,E. Essaky.??BSDE associated with Lévy processes and application to PDIE(J)Journal of Applied Mathematics and Stochastic Analysis . 2002 (1) 被引量:1
  • 8Mohamed El Otmani.??Generalized BSDE driven by a Lévy process(J)Journal of Applied Mathematics and Stochastic Analysis . 2006 被引量:1
  • 9Ken-ichi Mitsui,Yoshio Tabata.??A stochastic linear–quadratic problem with Lévy processes and its application to finance(J)Stochastic Processes and their Applications . 2007 (1) 被引量:1
  • 10Huaibin TANG Zhen WU.STOCHASTIC DIFFERENTIAL EQUATIONS AND STOCHASTIC LINEAR QUADRATIC OPTIMAL CONTROL PROBLEM WITH LEVY PROCESSES[J].Journal of Systems Science & Complexity,2009,22(1):122-136. 被引量:7

二级参考文献23

  • 1SHI Jing-Tao WU Zhen.The Maximum Principle for Fully Coupled Forward-backward Stochastic Control System[J].自动化学报,2006,32(2):161-169. 被引量:14
  • 2Nualart D, Schoutens W. Chaotic and predicatable representation for Levy processes with applications in finance. Schostic Process Appl, 2000, 90:109-122. 被引量:1
  • 3Nualart D, Schoutens W. BSDE's and Feynman-Kac formula for Levy processes with applications in finance. Bernouli, 2001, 7:761-776. 被引量:1
  • 4Bahlali K, Eddahbi M, Essaky E. BSDE associated with Levy processes and application to PDIE. J Appl Math Stoch Anal, 2003, 16(1): 1-17. 被引量:1
  • 5Mitsui K, Tabata Y. A stochastic linear-quadratic problem with L-vy processes and its application to finance. Schostic Proecss Appl, 2008, 118:120-152. 被引量:1
  • 6Protter P. Stochastic Integration and Differential Equations. Berlin: Spring-Verlag, 1990. 被引量:1
  • 7Kohlmann M, Tang S. Optimal control of linear stochastic systems with singular costs, and the mean-variance hedging problem with stochastic market conditions. University Konstanz, 2000. 被引量:1
  • 8Hu Y, Oksendal B. Partial information linear quadratic control for jump diffusions: SIAM J Control Optim, 2008, 47(4): 1744-1761. 被引量:1
  • 9Zhang W, Chen B S. State feedback H∞ control for a class of nonlinear stochastic systems. SIAM J Control Optim, 2006, 44(6): 1973-1991. 被引量:1
  • 10Yong J, Zhou X Y. Stochastic Controls-Hamiltonian Systems and HJB Equations. New York, Berlin, Heidelberg: Springer- Verlag, 1999. 被引量:1

共引文献12

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部