摘要
羧甲基壳聚糖含有丰富的羧基和氨基,通过1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)共催化交联羧甲基壳聚糖形成新型水凝胶.调节EDC/NHS用量,制备不同交联度的羧甲基壳聚糖水凝胶(CMCS hydrogels).研究水凝胶的流变行为,结果表明,高交联度的水凝胶具有较好的弹性形变能力,较高的储存模量,这是因为随着交联度的升高,羧甲基壳聚糖水凝胶化学交联网络结构趋于完善.以胸腺五肽(TP-5)为模型药物,初步评价CMCS水凝胶药物释放行为,结果表明水凝胶交联度越高,胸腺五肽释放速度越慢.MTT法初步评价了水凝胶细胞毒性,细胞形态和细胞相对增值速率,结果表明水凝胶毒性很低.由此可见,水凝胶具有良好的生物相容性,在药物缓释和组织工程领域具有广阔的应用前景.
Hydrogels were prepared by crosslinking carboxymethyl chitosan(CMCS) using 1-ethyl-3-(3-dimethylaminopropyl)-1-carbodiimide/N-hydroxysuccinimide(EDC/NHS) as catalyst under mild conditions. The resulting hydrogels present different crosslinking density, depending on the amount of EDC/NHS. Rheological studies show that hydrogels with high crosslinking density present higher storage modulus than those with low crosslinking density. A model drug, thymopentin(TP-5) is loaded in CMCS hydrogels. Parabolic release profiles are obtained in all cases. High crosslinking density hydrogels present slower release rate as compared to low crosslinking density ones because the former exhibits more compact structure. Preliminary studies were performed to evaluate the cytotoxicity of CMCS hydrogels by using MTT assay. Both cell morphology and RGR results show that the CMCS hydrogels present very low toxicity. Therefore, CMCS hydrogels are promising for applications in the fields of tissue engineering and controlled drug delivery.
出处
《化学学报》
SCIE
CAS
CSCD
北大核心
2015年第1期47-52,共6页
Acta Chimica Sinica
基金
国家自然科学基金(Nos.50873030
51073041)资助~~
关键词
羧甲基壳聚糖
水凝胶
流变性能
药物释放
细胞相容性
carboxymethyl chitosan
hydrogel
rheological properties
drug release
cytocompatibility