期刊文献+

基于大数据的大学生学习行为分析与研究 被引量:7

Analysis and Research on University Students' Learning Behaviors Based on Big Data
下载PDF
导出
摘要 在网络技术不断更新的大背景下,云学习环境逐步全球化。资源日益丰富的图书馆、Web 2. 0和MOOC(慕课)为网络学习提供了新的途径与平台,刺激了大学生的求知欲望,自主学习已经成为大学生高效学习的主旋律。基于网络数据集,运用大数据分析方法建立数学关系,找出相关因子,研究了同时期大学生学习行为的共性与个性。研究发现,大学生主要根据"个人兴趣"和"课程实用性"进行自主学习,且学习的自主性得到了有效的提高;同时,在线学习对学生具有极大的吸引力,但学生的辍学行为等也是值得注意的问题。大数据分析对于大学生学习行为的分析与研究有着积极的辅助性及推动性作用,且大数据分析结论可为教学管理部门进一步提高大学生的学习成绩和学术水平出谋划策。 The cloud learning environment has been gradually globalized against the context of constantly updated network technology. The increasingly growing library resources,the advent of Web 2. 0 and MOOC( massive open online courses),which provides the new means and platform for network learning,have stimulated the students’ thirst for knowledge. Nowadays,autonomous learning has become the theme of efficient learning for college students. Based on network data set,the mathematical relationship is built by using big data analysis method and the correlation factor is found,which can be used to study the commonness and personality of the students’ learning behaviors in the same period. The study has found that the university students learn autonomously according to their ' personal interest' and ' course practicality',and their learning autonomy has been improved a lot. At the same time,online learning is a great attraction to the students,and students’ dropout is worth paying attention to. Big data analysis has played the supporting and motivating role in the analysis and study of students’ learning behaviors,which can provide reference for the university teaching administration department to improve the university students academic achievement.
作者 段超 林丽 黄家才 宋超 赵海雯 汪海洋 DUAN Chao;LIN Li;HUANG Jiacai;SONG Chao;ZHAO Haiwen;WANG Haiyang(Graduates Department,Nanjing Institute of Technology,Nanjing Jiangsu 211167;School of Computer Engineering,Nanjing Institute of Technology,Nanjing Jiangsu 211167;School of Automation,Nanjing Institute of Technology,Nanjing Jiangsu 211167;Mathematics and Physics Department,Nanjing Institute of Technology,Nanjing Jiangsu 211167)
出处 《湖北理工学院学报》 2019年第1期27-30,35,共5页 Journal of Hubei Polytechnic University
基金 南京工程学院大学生科技创新基金项目(项目编号:TB201707005)
关键词 大数据 大学生学习行为 时间序列分析 MOOC辍学预测 big data college students’ learning behavior time series analysis MOOC dropout prediction
  • 相关文献

参考文献7

二级参考文献59

  • 1张引,陈敏,廖小飞.大数据应用的现状与展望[J].计算机研究与发展,2013,50(S2):216-233. 被引量:376
  • 2葛道凯,张少刚,魏顺平.教育数据挖掘:方法与应用[M].北京:教育科学出版社,2012:29-30. 被引量:12
  • 3李晓明.慕课:是橱窗?还是店堂?[J].中国计算机学会通讯,2013,9(12):24-28. 被引量:1
  • 4Siemens G. Connectivism A learning theory for the digital age [EB/OL]. (2005-04-05)[201406-01]. http://www. ingedewaard, net/papers/connectivism/2005 siernens_ALearning TheoryForTheDigitalAge. pd{. 被引量:1
  • 5Osvaldo R C. Moocs and the AI-Stanl,ord like courses: Two successl'ul and distinct course formats l'or massive open online courses [J/OL]. European Journal of' Open, Distance and E Learning, 2012(2) .- 1-13. [2014-06-01]. http=//l,iles, eric. ed. gov/l'ulltext/EJ982976, pdl. 被引量:1
  • 6Downes S. New technology supporting informal learning [J]. Journal of Emerging Technologies in Web Intelligence, 2010, 2(1) : 27-33. 被引量:1
  • 7Breslow L, Pritchard D, DeBoer J, et al. Studying learning in the worldwide classroom: Research into edX's first MOOC [J]. Research % Practice in Assessment, 2013, 8(1) : 13-25. 被引量:1
  • 8McAndrew P, Scanlon E. Open learning at a distance Lessons for struggling MOOCs [J]. Science, 2013, 342 (6165) : 1450-1451. 被引量:1
  • 9北大慕课教学研究组.2013北京大学首批慕课(MOOC)人群与网络调查分析报告[R/OL].北京:北京大学,2014[2014-06一01].http://pan.baidu.com/s/lc0vUMm0. 被引量:1
  • 10Waldrop M M. Online learning.. Campus 2.0 [J]. Nature, 2013, 495(7440) .. 160-163. 被引量:1

共引文献382

同被引文献31

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部