摘要
Our experiments show that external focusing and initial laser energy strongly influences filament generated by the femtosecond Ti–sapphire laser in air. The experimental measurements show the filament length can be extended both by increasing the laser energy and focal length of focusing lens. On the other hand, the plasma fluorescence emission can be enhanced by increasing the laser energy with fixed focal length or decreasing the focal length. In addition, the collapse distance measured experimentally are larger than the calculated ones owing to the group-velocity-dispersion effect. In addition, we find that the line widths of the spectral lines from N2 is independent of filament positions, laser energies and external focusing.
Our experiments show that external focusing and initial laser energy strongly influences filament generated by the femtosecond Ti–sapphire laser in air. The experimental measurements show the filament length can be extended both by increasing the laser energy and focal length of focusing lens. On the other hand, the plasma fluorescence emission can be enhanced by increasing the laser energy with fixed focal length or decreasing the focal length. In addition, the collapse distance measured experimentally are larger than the calculated ones owing to the group-velocity-dispersion effect. In addition, we find that the line widths of the spectral lines from N2 is independent of filament positions, laser energies and external focusing.
基金
supported by the National Basic Research Program of China (No.2013CB922200)
the National Natural Science Foundation of China (Nos.11474129,and 11504129)
the Research Fund for the Doctoral Program of Higher Education (No.20130061110021)
the Graduate Innovation Fund of Jilin University (No.2015091)