期刊文献+

工作气压对氩射频电感耦合等离子体模式转换的影响

The Influence of Working Pressure on Argon RF Inductively Coupled Plasma Mode Conversion
下载PDF
导出
摘要 采用朗格缪尔探针诊断装置测量电子能量和等离子体密度,利用发射光谱诊断装置测量发光强度,以判断实验腔室内的放电模式.结果表明:等离子体放电可以在E模式和H模式间相互转换,并且等离子体密度和发光强度随着射频功率的变化而出现反向滞后现象.当工作气压在0.36~0.42 Pa区间时,滞后现象不再发生.此外,随着工作气压的增大,E-H模转换的跳跃功率先减小而后增大,在工作气压为0.39 Pa时跳跃功率最低.射频功率越大,气体保持H模式放电所需气压的范围越大.研究结果可为实际工业生产中的气压控制提供参考依据. The Langmuir probe diagnostic device was used to measure the electron temperature and the plasma density,and the spectral intensity measured with the emission spectroscopy diagnostic device was used to determine the discharge mode in the experimental chamber. The results show that the plasma discharge can be converted between E mode and H mode,and the spectral intensity and plasma density exhibit inverse hysteresis phenomenon with the change of power. When the working pressure ranges between 0.36 Pa and 0.42 Pa,the hysteresis will disappear. In addition,as the vacuum chamber pressure increases,the jump power of the E-H mode conversion decreases first and then increases,and it is the lowest at a working pressure of 0.39 Pa. The greater the RF power,the greater the range of barometric pressure required for the gas to remain in H-mode. All of these can provide reference for the control of the air pressure in the actual industrial production.
作者 熊文文 陈俊芳 王燕 王勇 XIONG Wenwen;CHEN Junfang;WANG Yan;WANG Yong(College of Physics and Telecommunication Engineering,South China Normal University,Guangzhou 510631,China)
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2019年第1期16-21,共6页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61072028) 广东省自然科学基金项目(S2013010012548 1015063101000048)
关键词 射频感应耦合等离子体 工作气压 ICP放电 发射光谱 LANGMUIR探针 E-H模式转换 Inductively Coupled Plasma working pressure ICP discharge optical emission spectrum Langmuir probe E-H mode conversion
  • 相关文献

参考文献2

二级参考文献62

  • 1符斯列,陈俊芳,吴先球,王宁星,张茂平,胡社军.Spatial Distribution of ECR Plasma Density in ECR-PECVD Reaction Chamber[J].Plasma Science and Technology,2006,8(3):300-302. 被引量:5
  • 2Rousseau A, Granier A, Goussel G and Leprince P 1994 J. Phys. D: Appl. Phys. 27 1412. 被引量:1
  • 3Bachmann P K, Leers D and Lyatin H 1994 Diamond Relat. Matel: 1 1. 被引量:1
  • 4Gottscho R A, Preppernau B L, Pearton S J, EmersonA B and Giappis K P 19911 J. Appl. Phys. 68 440. 被引量:1
  • 5Gicquel A, Anger E, Rave! M F, Fabre D, Scatena D and Wang Z Z 1993 Diamond Relat. Mater: 2 417. 被引量:1
  • 6Findeling-Dufour C, Gicquel A and Chiron R 1998 Diamond Relat. Mater: 7 986. 被引量:1
  • 7Hou G I; Geng X H, Zhang X D, Sun J. Zhang J H and Zhao Y 2011 Chin. Phys. B 20 077802. 被引量:1
  • 8Yan W S, Wei D Y, Xu S, Sern C C and Zhou H P 2011 J. Phys. D: Appl. Phys. 44 345401. 被引量:1
  • 9Zhang H L, Liu F Z, Zhu M F and Liu J L 2012 Ch#t. Phys. B 21 015203. 被引量:1
  • 10Lieberman M A and Lichtenberg A J 20(15 Ptqnciples Plasma Discharges attd Materials Ptvcessing (2rid edn) (New York: Wiley- lnterscience). 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部