期刊文献+

航空发动机锥齿轮故障诊断技术研究 被引量:3

Research on Fault Diagnosis Technology of Aeroengine Bevel Gear
原文传递
导出
摘要 通过在锥齿轮相对应的附件机匣壳体上固定加速度传感器,在发动机试车过程中采集锥齿轮振动信号,识别特征信号,运用时频分析法、低秩稀疏分解算法、稀疏正则算法、谱峭度法分别对锥齿轮故障特征信号进行分析处理,通过比较分析,表明低秩稀疏分解算法能够有效滤除噪声和谐波干扰信号,增强故障特征信号的显著性,识别锥齿轮潜在故障,解决了锥齿轮微弱振动信号难以分离和识别的技术难题,实现了航空发动机锥齿轮故障诊断,保证了锥齿轮工作可靠性和安全性,为航空发动机锥齿轮故障诊断提供了新方法。 By fixing the acceleration sensor on the ac-cessory casing corresponding to the bevel gear, the vibration signal of the bevel gear is collected during the engine test. The vibration signal is analyzed. The results show that the low-rank sparse decomposition algorithm can effectively filter out noise. The harmonic interference signal enhances the saliency of the fault characteristic signal, can effectively identify the potential fault of the bevel gear, solves the technical problem that the bevel gear weak vibration signal is difficult to separate and identify, realizes the aeroengine bevel gear fault diagnosis.
作者 陈礼顺 程礼 张晗 梁涛 陈超 CHEN Li-shun;CHENG Li;ZHANG Han(Aircraft Engineering College,Nanchang Hangkong University,Nanchang 330063;Aeronautics and Astronautics Engineering College,Air Force Engineering University,Xi'an 710038;Key Laboratory of Road Construction Technology and Equipment,Ministry of Education,Chang'an University,Xi'an 710064)
出处 《航空精密制造技术》 2019年第1期41-45,共5页 Aviation Precision Manufacturing Technology
关键词 航空发动机 锥齿轮 故障诊断 低秩稀疏分解 振动信号 aero-engine bevel gear fualt diagnosis low-rank sparse decomposition vibration signal
  • 相关文献

参考文献5

二级参考文献28

  • 1Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries[J]. IEEE Transaction on Signal Processing, 1993, 41(12): 3397-3415. 被引量:1
  • 2Qian S, Chen D. Signal representation via adaptive normalized Gaussian function [J]. Signal Processing, 1994, 36(1), 1-11. 被引量:1
  • 3Friedman J H, Stuetzle W. Projection pursuit regression [J]. Journal of the American Statistical Association, 1981, 76:817-823. 被引量:1
  • 4Gersho A, Gray R M. Vector quantization and signal compression [M]. Boston: Kluwer Academic Publisher, 1992. 被引量:1
  • 5Ebrahimi-Moghadam A, Shirani S. Matching pursuitbased region-of-interest image coding[J]. IEEE Transactions on Image Processing, 2007, 16(2) : 406-415. 被引量:1
  • 6Rankine L, Mesbah M. Boashash B. A matching pursuit-based signal complexity measure for the analysis of newborn EEG [J]. Medical and Biological Engineering and Computing, 2007, 45(3): 251-260. 被引量:1
  • 7Mallat S. A wavelet tour of signal processing [M]. Beijing: China Machine Press, 2003. 被引量:1
  • 8Badaoui M E, Antoni J, Guillet F. Use of the moving cepstrum integral to detect and localize tooth spalls in gears [J]. Mechanical Systems and Signal Processing, 2001, 15(5): 873-885. 被引量:1
  • 9WU Zhaohua,HUANG N E.Ensemble empirical mode decomposition:A noise-assisted data analysis method[J].World Scientific,2009,1(1):1-41. 被引量:1
  • 10WU Zhaohua,HUANG N E.A study of the characteristics of white noise using the empirical mode decomposition method[J].The Royal Society,2004,460:1597-1611. 被引量:1

共引文献26

同被引文献73

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部