摘要
黄连根茎和制剂具有抗菌等作用,广泛用于水产养殖,所造成水生态风险需要评估.试验设置总生物碱为0(CK),0.088(T1)、0.44(T2)和1.76 mg·L-1(T3)的黄连根茎浸提液(CRE)4种处理,研究了对斜生栅藻和蛋白核小球藻的毒理作用.结果表明,T1抑制绿藻生长,T2和T3使绿藻生长和繁殖停止;它们均显著降低绿藻叶绿素和蛋白质含量,说明CRE抑制光合作用和蛋白质合成是绿藻生长繁殖速率降低和死亡的直接原因.CRE使氢离子和胞内物质外流,导致藻液p H值显著降低和电导率提高.在T1和T2处理中,绿藻细胞SOD活性先升后降;在T3处理中,SOD活性显著降低.说明在CRE暴露初期,低中浓度的CRE诱导绿藻细胞产生抗性,随暴露时间增长或直接暴露在高浓度的CRE下,抗氧化酶系统被破坏.同样,随着CRE浓度增大,丙二醛含量增加,意味着绿藻细胞膜结构破坏,透性增加.CRE总体上对蛋白核小球藻的危害作用大于斜生栅藻.在水产养殖中,滥用黄连根茎或制剂,以及大规模集约化种植黄连对水体初级生产力具有潜在的生态风险.
Coptis chinensis contains antiseptic alkaloids and thus its rhizomes and preparations are widely used for the treatment of fish diseases. In order to realize the risk of water ecosystems produced by this medical herb and preparations used in aquaculture, the present experiment was carried out to study the toxicity of Coptis chinensis rhizome extract (CRE) to Scenedesmus oblique and Chlorella pyrenoidosa grown in culture solution with 0. 00 (CK), 0. 088 (T1), 0. 44 (T2) and 1. 76 mg?L - 1 (T3) of CRE, respectively. The results show that low concentration of CRE (T1) inhibited the growth rate of the alga and high CRE (T2 and T3) ceased growth and reproductions. CRE also decreased the chlorophyll and proteins in alga cells, indicating the inhibition of photosynthesis and protein biosynthesis, which could be direct reasons for the low growth rate and death of green alga. The efflux of protons and substances from alga cells led to pH reduction and conductivity increment in culture solution with CRE. Furthermore, the activity of superoxide dismutase in alga increased at the beginning of CRE in T1 and T2 treatments but decreased as time prolonged which was in contrast to high CRE treatment. And the long exposure to low CRE treatment behaved otherwise. This suggests that the low concentration of CRE could induce the resistant reactions in alga at initial time but high CRE concentration or long exposure even at low CRE concentration could inhibit the enzyme synthesis. Similarly, malondialdehyde in alga increased as CRE concentrations increased in culture solutions, implying the damage and high permeability of cell membrane. In general,Chlorella pyrenoidosa was more sensitive to CRE. The abuse of rhizomes and preparations in aquaculture and intensive cultivation of Coptis chinensis plants in a large scale might produce ecological risks to primary productivity of water ecosystems.
出处
《环境科学》
EI
CAS
CSCD
北大核心
2015年第5期1655-1661,共7页
Environmental Science
基金
国家重点基础研究发展规划(973)项目(2013CB127405)
关键词
黄连根茎
斜生栅藻
蛋白核小球藻
毒理作用
生物碱
Coptis chinensis
Scenedesmus oblique
Chlorella pyrenoidosa
toxicity
alkaloid