期刊文献+

碳纳米管-水纳米流体的光热转化特性 被引量:6

Photo-thermal properties of MWCNT-H_2O nanofluid
下载PDF
导出
摘要 通过两步法配制了浓度范围0.0015%~0.1%(质量,下同)的多壁碳纳米管(MWCNT)-水纳米流体,并利用分光光度计对不同浓度、静置时间和加热次数下纳米流体在波长200~2000nm范围内的透射率进行了测试。同时,还对上述纳米流体开展了闷晒实验,研究了浓度和光照次数对纳米流体光热转换性能的影响。结果表明,水中添加MWCNT后透射率明显下降,纳米流体的透射率随着静置时间的增加而减小,加热有利于提高纳米流体的吸光性能;同时,闷晒实验发现存在利于光热转化的MWCNT-水纳米流体最佳浓度(0.01%),光照45min后与水相比最佳浓度下的纳米流体温升提高了约15.1℃(或22.7%)。另外,纳米流体浓度较低时其光热转换性能随着光照次数的增加而提高,但浓度较高时则刚好相反,纳米颗粒团聚作用可能是造成上述结果的主要原因。 Stable aqueous suspensions of multi-walled carbon nanotubes (MWCNTs)with mass fractions ranging from 0.0015% to 0.1% were prepared via two-step method.The impacts of mass fraction,setting time,and heating times on the optical absorption property of MWCNT-H 2 O nanofluid were investigated according to the transmittance measured by UV-VIS-NIR spectrophotometer over the wavelength from 200 to 2000 nm.Furthermore,an insolation experiment was performed to investigate the effects of mass fraction and light irradiation times on the photo-thermal property of MWCNT-H 2 O nanofluids.Results show that the transmittance of MWCNT-H 2 O nanofluid was decreased evidently after the addition of MWCNTs in deionized (DI)water,and long setting time leads to smaller transmittance.Heating is beneficial to improve light-absorption property of nanofluids.An optimal mass fraction of 0.01% with respect to the best photo-thermal conversion was found.Compared to DI water,the temperature of MWCNT-H 2 O nanofluid at the optimal mass fraction was increased by about 15.1℃ (or 22.7%)after a lighting time of 45 min.Additionally,photo-thermal conversion performance is enhanced with increasing the lighting time at a low concentration of nanofluid,while it is just opposite at higher concentrations.The nanoparticle agglomeration may account for the above results.
出处 《化工学报》 EI CAS CSCD 北大核心 2016年第S2期113-119,共7页 CIESC Journal
基金 国家自然科学基金项目(51576091) 中国博士后科学基金特别资助项目(2015T80523)~~
关键词 纳米材料 太阳能 光热特性 透射率 团聚 nanomaterial solar energy photo-thermal property transmittance agglomeration
  • 相关文献

参考文献5

二级参考文献46

  • 1王晓燕,兰青,谌学先.平板型与全玻璃真空管型太阳热水器热性能比较分析[J].云南师范大学学报(自然科学版),2003,23(z1):46-49. 被引量:3
  • 2Aravind, S. S.J., Baskar, P., Baby, T. T., Sabareesh, R. K., Gas, S., & Ramaprabhu, S. (2011 ). Investigation of structural stability, dispersion, viscosity, and conductive heat transfer properties of functionalized carbon nanotube based nanofluids. The Journal of Physical Chemistry C, 115, 16737-16744. 被引量:1
  • 3Assael, M. J., Chen, C. F., Metaxa, I., & Wakeham, A. (2004). Thermal conductivity of suspensions of carbon nanotubes in water. International Journal of Thermo- physics, 25, 971-985. 被引量:1
  • 4Berber, S., Kwon, Y. K., & Tomanek, D. (2000). Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 84, 4613-4616. 被引量:1
  • 5Che,J., Cagin, T., & Goddard, W. A., III. (2000). Thermal conductivity of carbon nano- tubes. Nanotechnology, 11, 65-69. 被引量:1
  • 6Choi, S. U. S. (1995). Enhancing thermal conductivity of fluids with nanoparticles. In D. A. Singer, & H. P. Wang (Eds.), Developments and applications of non-Newtonian flows (pp. 99-105). New York: American Society of Mechanical Engineers. 被引量:1
  • 7Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., & Grulke, E. A. (2001). Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 79, 2252-2254. 被引量:1
  • 8Das, S. K., Choi, S. U. S., Yu, W. H., & Pradeep, T. (2008). Nanofluids: Science and technology. New York: John Wiley & Sons. 被引量:1
  • 9Fernandes, D., Pitie, F., Caceres, G., & Baeyens,J. (2012 ). Thermal energy storage: How previous findings determine current research priorities. Energy, 39, 246-257. 被引量:1
  • 10Han, D., Meng, Z., Wu, D., Zhang, C., & Zhu, H. (2011 ). Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Research Letters, 6, 457. 被引量:1

共引文献86

同被引文献44

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部