期刊文献+

基于VMD能量熵与支持向量机的断路器机械故障诊断方法研究 被引量:3

Research on mechanical fault diagnosis method of circuit breaker based on VMD energy entropy and support vector machine
下载PDF
导出
摘要 高压断路器分、合闸时产生的振动信号中存在着大量的机械状态信息,为了准确地进行高压断路器机械故障诊断,采用变分模态分解对高压断路器分闸过程中的振动信号进行分解得到多个IMF分量,对得到的IMF分量提取能量熵作为特征量输入到支持向量机中进行高压断路器机械故障识别,实验结果验证了该方法诊断故障的有效性。 There is a large amount of mechanical state information in the vibration signals generated by high voltage circuit breakers when they are switched on and off. In order to accurately diagnose the mechanical fault of high voltage circuit breakers,the vibration signals generated by high voltage circuit breakers during switching are decomposed into multiple IMF components by variational mode decomposition,and the energy entropy of the obtained IMF components is extracted as a feature and input into the support vector machines to identify the mechanical fault of high voltage circuit breakers. The experimental results verify the validity of the method in fault diagnosis.
作者 陈尚 郑翔 CHEN Shang;ZHENG Xiang(State Grid Beijing Fangshan Power Supply Company,Beijing 102401,China)
出处 《黑龙江电力》 CAS 2019年第1期60-63,共4页 Heilongjiang Electric Power
关键词 高压断路器 变分模态分解 支持向量机 能量熵 故障诊断 high voltage circuit breaker variational mode decomposition support vector machine energy entropy fault diagnosis
  • 相关文献

参考文献5

二级参考文献33

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2盖广洪.经验模态分解的一种改进算法[J].西安交通大学学报,2004,38(11):1199-1202. 被引量:22
  • 3李辉,郑海起,唐力伟.声测法和经验模态分解在轴承故障诊断中的应用[J].中国电机工程学报,2006,26(15):124-128. 被引量:26
  • 4Sohn H,Farrar C R,Hemez F M,et al.A Review of Structural Health Monitoring Literature:1996,2001[R].Los Alamos National Laboratory Report,LA-13976-MS,2004 被引量:1
  • 5Saadata S,et al.Structural health monitoring and damage detection using an intelligent parameter varying (IPV) technique[J].International Journal of Non-Linear Mechanics,2004,39 被引量:1
  • 6Kim H,Melhem H.Damage detection of structures by wavelet analysis[J].Engineering Structures,2004,26:347~362 被引量:1
  • 7Huang N E,et al.The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis[A].Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences[C],1998:903~995 被引量:1
  • 8Yang J N,Lei Y,Lin S,Huang N.Hilbert-Huang-based approach for structural damage detection[J].Journal of Engineering Mechanics,2004,130(1):85~95 被引量:1
  • 9Chang C C,et al.Multi-component signal decomposition techniques for structural health monitoring[A].Proc.of SPIE[C],2005:873~880 被引量:1
  • 10Huang N E,Shen Z,Long S R.A new view of nonlinear water wave:the Hilbert spectrum[J].Annu.Rev.Fluid Mech.,1999,31:417~457 被引量:1

共引文献347

同被引文献66

引证文献3

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部