期刊文献+

基于GA-ANN模型的A^2/O工艺运行参数优化 被引量:1

Optimization of the A^2/O technological parameters based on GA-ANN model
下载PDF
导出
摘要 影响A^2/O工艺运行的参数有许多,这些因素相互联系、相互作用,影响工艺效率.为了弥补控制单一变量法或者设计正交试验法的不足,综合考察多种运行参数对工艺运行效果的影响,建立了基于遗传算法进行全局寻优的神经网络模型(GA-ANN模型),并应用于某城市污水处理厂A^2/O工艺的运行优化.获得该厂调试运行期间154组有效监测数据后,随机选取2/3的数据用于GA-ANN模型的求解,1/3的数据用于模型的检验,对工艺运行参数进行优化,得到最佳运行参数组合.结果显示,建立基于遗传算法的神经网络模型用于A^2/O工艺运行参数的优化是可行的,可以为污水处理厂运行参数的设置提供理论参考,对调试工作、提高工艺运行效率具有一定的实际指导意义. A^2/O process is one of the major processes in municipal waste water treatment,but many parameters affect the operation effect of A^2/O process. And these parameters interact with each other,affecting the efficiency of the process. In order to make up the insufficience of single variable control method or orthogonal designing method,it establishes the neural network model( GA-ANN model) based on genetic algorithm. The model has been applied to an urban waste water treatment plant by A^2/O process optimization. During the commissioning operation of the plant,it has obtained 154 effective monitoring data,and 2/3 of the data has been randomly selected for the GA-ANN model,and 1/3 of the data has been used for the model test. The process parameters have been optimized and get the best combination of operating parameters. The results show that it is feasible to establish the neural network model based on the genetic algorithm for the optimization of the A^2/O process operation parameters. It can provide the theoretical reference for setting operation parameter of the waste water treatment plant. And it is also helpful to the practical production and application for adjustment and improvement of the operation efficiency.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2017年第9期117-121,共5页 Journal of Harbin Institute of Technology
基金 城市水资源与水环境国家重点实验室(哈尔滨工业大学)自主课题(2016TS02) 黑龙江省自然科学基金委面上项目(E201427) 国家留学基金资助
关键词 城市污水 A2/O 运行参数 GA-ANN模型 municipal sewage A2/O operating parameter GA-ANN model
  • 相关文献

同被引文献17

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部